Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 22(1): 302, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088263

RESUMO

BACKGROUND: Quantitative proteomics studies are often used to detect proteins that are differentially expressed across different experimental conditions. Functional enrichment analyses are then typically used to detect annotations, such as biological processes that are significantly enriched among such differentially expressed proteins to provide insights into the molecular impacts of the studied conditions. While common, this analytical pipeline often heavily relies on arbitrary thresholds of significance. However, a functional annotation may be dysregulated in a given experimental condition, while none, or very few of its proteins may be individually considered to be significantly differentially expressed. Such an annotation would therefore be missed by standard approaches. RESULTS: Herein, we propose a novel graph theory-based method, PIGNON, for the detection of differentially expressed functional annotations in different conditions. PIGNON does not assess the statistical significance of the differential expression of individual proteins, but rather maps protein differential expression levels onto a protein-protein interaction network and measures the clustering of proteins from a given functional annotation within the network. This process allows the detection of functional annotations for which the proteins are differentially expressed and grouped in the network. A Monte-Carlo sampling approach is used to assess the clustering significance of proteins in an expression-weighted network. When applied to a quantitative proteomics analysis of different molecular subtypes of breast cancer, PIGNON detects Gene Ontology terms that are both significantly clustered in a protein-protein interaction network and differentially expressed across different breast cancer subtypes. PIGNON identified functional annotations that are dysregulated and clustered within the network between the HER2+, triple negative and hormone receptor positive subtypes. We show that PIGNON's results are complementary to those of state-of-the-art functional enrichment analyses and that it highlights functional annotations missed by standard approaches. Furthermore, PIGNON detects functional annotations that have been previously associated with specific breast cancer subtypes. CONCLUSION: PIGNON provides an alternative to functional enrichment analyses and a more comprehensive characterization of quantitative datasets. Hence, it contributes to yielding a better understanding of dysregulated functions and processes in biological samples under different experimental conditions.


Assuntos
Fenômenos Biológicos , Proteômica , Análise por Conglomerados , Humanos , Mapas de Interação de Proteínas , Proteínas
2.
FASEB J ; 35(4): e21278, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33769614

RESUMO

Mitochondria share attributes of vesicular transport with their bacterial ancestors given their ability to form mitochondrial-derived vesicles (MDVs). MDVs are involved in mitochondrial quality control and their formation is enhanced with stress and may, therefore, play a potential role in mitochondrial-cellular communication. However, MDV proteomic cargo has remained mostly undefined. In this study, we strategically used an in vitro MDV budding/reconstitution assay on cardiac mitochondria, followed by graded oxidative stress, to identify and characterize the MDV proteome. Our results confirmed previously identified cardiac MDV markers, while also revealing a complete map of the MDV proteome, paving the way to a better understanding of the role of MDVs. The oxidative stress vulnerability of proteins directed the cargo loading of MDVs, which was enhanced by antimycin A (Ant-A). Among OXPHOS complexes, complexes III and V were found to be Ant-A-sensitive. Proteins from metabolic pathways such as the TCA cycle and fatty acid metabolism, along with Fe-S cluster, antioxidant response proteins, and autophagy were also found to be Ant-A sensitive. Intriguingly, proteins containing hyper-reactive cysteine residues, metabolic redox switches, including professional redox enzymes and those that mediate iron metabolism, were found to be components of MDV cargo with Ant-A sensitivity. Last, we revealed a possible contribution of MDVs to the formation of extracellular vesicles, which may indicate mitochondrial stress. In conclusion, our study provides an MDV proteomics signature that delineates MDV cargo selectivity and hints at the potential for MDVs and their novel protein cargo to serve as vital biomarkers during mitochondrial stress and related pathologies.


Assuntos
Mitocôndrias Cardíacas/fisiologia , Estresse Oxidativo , Vesículas Transportadoras/fisiologia , Animais , Linhagem Celular , Regulação da Expressão Gênica , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mioblastos , Proteômica , Ratos
3.
J Proteome Res ; 19(11): 4553-4566, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33103435

RESUMO

While the COVID-19 pandemic is causing important loss of life, knowledge of the effects of the causative SARS-CoV-2 virus on human cells is currently limited. Investigating protein-protein interactions (PPIs) between viral and host proteins can provide a better understanding of the mechanisms exploited by the virus and enable the identification of potential drug targets. We therefore performed an in-depth computational analysis of the interactome of SARS-CoV-2 and human proteins in infected HEK 293 cells published by Gordon et al. (Nature2020, 583, 459-468) to reveal processes that are potentially affected by the virus and putative protein binding sites. Specifically, we performed a set of network-based functional and sequence motif enrichment analyses on SARS-CoV-2-interacting human proteins and on PPI networks generated by supplementing viral-host PPIs with known interactions. Using a novel implementation of our GoNet algorithm, we identified 329 Gene Ontology terms for which the SARS-CoV-2-interacting human proteins are significantly clustered in PPI networks. Furthermore, we present a novel protein sequence motif discovery approach, LESMoN-Pro, that identified 9 amino acid motifs for which the associated proteins are clustered in PPI networks. Together, these results provide insights into the processes and sequence motifs that are putatively implicated in SARS-CoV-2 infection and could lead to potential therapeutic targets.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Interações Hospedeiro-Patógeno/genética , Pandemias , Pneumonia Viral , Mapas de Interação de Proteínas , Algoritmos , Motivos de Aminoácidos , Betacoronavirus/química , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , COVID-19 , Análise por Conglomerados , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Ontologia Genética , Células HEK293 , Humanos , Anotação de Sequência Molecular , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Ligação Proteica , Mapas de Interação de Proteínas/genética , Mapas de Interação de Proteínas/fisiologia , Proteínas/química , Proteínas/classificação , Proteínas/genética , Proteínas/metabolismo , SARS-CoV-2 , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...