Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 83(20): 3659-3668.e10, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37832547

RESUMO

The integrity of the nuclear envelope (NE) is essential for maintaining the structural stability of the nucleus. Rupture of the NE has been frequently observed in cancer cells, especially in the context of mechanical challenges, such as physical confinement and migration. However, spontaneous NE rupture events, without any obvious physical challenges to the cell, have also been described. The molecular mechanism(s) of these spontaneous NE rupture events remain to be explored. Here, we show that DNA damage and subsequent ATR activation leads to NE rupture. Upon DNA damage, lamin A/C is phosphorylated in an ATR-dependent manner, leading to changes in lamina assembly and, ultimately, NE rupture. In addition, we show that cancer cells with intrinsic DNA repair defects undergo frequent events of DNA-damage-induced NE rupture, which renders them extremely sensitive to further NE perturbations. Exploiting this NE vulnerability could provide a new angle to complement traditional, DNA-damage-based chemotherapy.


Assuntos
Lamina Tipo A , Membrana Nuclear , Membrana Nuclear/metabolismo , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Fosforilação , Dano ao DNA , DNA/metabolismo , Núcleo Celular/metabolismo
2.
Cell ; 184(20): 5230-5246.e22, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34551315

RESUMO

Although mutations leading to a compromised nuclear envelope cause diseases such as muscular dystrophies or accelerated aging, the consequences of mechanically induced nuclear envelope ruptures are less known. Here, we show that nuclear envelope ruptures induce DNA damage that promotes senescence in non-transformed cells and induces an invasive phenotype in human breast cancer cells. We find that the endoplasmic reticulum (ER)-associated exonuclease TREX1 translocates into the nucleus after nuclear envelope rupture and is required to induce DNA damage. Inside the mammary duct, cellular crowding leads to nuclear envelope ruptures that generate TREX1-dependent DNA damage, thereby driving the progression of in situ carcinoma to the invasive stage. DNA damage and nuclear envelope rupture markers were also enriched at the invasive edge of human tumors. We propose that DNA damage in mechanically challenged nuclei could affect the pathophysiology of crowded tissues by modulating proliferation and extracellular matrix degradation of normal and transformed cells.


Assuntos
Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Dano ao DNA , Exodesoxirribonucleases/metabolismo , Membrana Nuclear/metabolismo , Fosfoproteínas/metabolismo , Animais , Linhagem Celular , Senescência Celular , Colágeno/metabolismo , Progressão da Doença , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Membrana Nuclear/ultraestrutura , Proteólise , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Curr Opin Cell Biol ; 72: 137-145, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34461580

RESUMO

During cell growth and motility in crowded tissues or interstitial spaces, cells must integrate multiple physical and biochemical environmental inputs. After a number of recent studies, the view of the nucleus as a passive object that cells have to drag along has become obsolete, placing the nucleus as a central player in sensing some of these inputs. In the present review, we will focus on changes in nuclear shape caused by external and internal forces. Depending on their magnitude, nuclear deformations can generate signaling events that modulate cell behavior and fate, or be a source of perturbations or even damage, having detrimental effects on cellular functions. On very large deformations, nuclear envelope rupture events become frequent, leading to uncontrolled nucleocytoplasmic mixing and DNA damage. We will also discuss the consequences of repeated compromised nuclear integrity, which can trigger DNA surveillance mechanisms, with critical consequences to cell fate and tissue homeostasis.


Assuntos
Núcleo Celular , Membrana Nuclear , Dano ao DNA , Transdução de Sinais
4.
Curr Opin Cell Biol ; 70: 100-108, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33662810

RESUMO

Although textbook pictures depict the cell nucleus as a simple ovoid object, it is now clear that it adopts a large variety of shapes in tissues. When cells deform, because of cell crowding or migration through dense matrices, the nucleus is subjected to large constraints that alter its shape. In this review, we discuss recent studies related to nuclear fragility, focusing on the surprising finding that the nuclear envelope can form blebs. Contrary to the better-known plasma membrane blebs, nuclear blebs are unstable and almost systematically lead to nuclear envelope opening and uncontrolled nucleocytoplasmic mixing. They expand, burst, and repair repeatedly when the nucleus is strongly deformed. Although blebs are a major source of nuclear instability, they are poorly understood so far, which calls for more in-depth studies of these structures.


Assuntos
Núcleo Celular , Membrana Nuclear , Membrana Celular , Humanos
5.
Mech Dev ; 154: 277-286, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30096416

RESUMO

Thanks to the power of Drosophila genetics, this animal model has been a precious tool for scientists to uncover key processes associated to innate immunity. The fly immune system relies on a population of macrophage-like cells, also referred to as hemocytes, which are highly migratory and phagocytic, and can easily be followed in vivo. These cells have shown to play important roles in fly development, both at the embryonic and pupal stages. However, there is no robust assay for the study of hemocyte migration in vitro, which limits our understanding of the molecular mechanisms involved. Here, we contribute to fill this gap by showing that hemocytes adopt a polarized morphology upon ecdysone stimulation, allowing the study of the cytoskeleton rearrangements and organelle reorganization that take place during the first step of cell locomotion.


Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Drosophila melanogaster/fisiologia , Hemócitos/fisiologia , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Hemócitos/metabolismo , Fagocitose/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...