Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Neuropharmacol ; 15(2): 276-290, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27397479

RESUMO

Given the importance of microRNAs (miRNAs) in modulating brain functions and their implications in neurocognitive disorders there are currently significant efforts devoted in the field of miRNA-based therapeutics to correct and/or to treat these brain diseases. The observation that miRNA 29a/b-1 cluster, miRNA 10b and miRNA 7, for instance, are frequently deregulated in the brains of patients with neurocognitive diseases and in animal models of Alzheimer, Huntington's and Parkinson's diseases, suggest that correction of miRNA expression using agonist or antagonist miRNA oligonucleotides might be a promising approach to correct or even to cure such diseases. The encouraging results from recent clinical trials allow envisioning that pharmacological approaches based on miRNAs might, in a near future, reach the requirements for successful therapeutic outcomes and will improve the healthcare of patients with brain injuries or disorders. This review will focus on the current strategies used to modulate pharmacological function of miRNA using chemically modified oligonucleotides. We will then review the recent literature on strategies to improve nucleic acid delivery across the blood-brain barrier which remains a severe obstacle to the widespread application of miRNA therapeutics to treat brain diseases. Finally, we provide a state-of-art of current preclinical research performed in animal models for the treatment of neurocognitive disorders using miRNA as therapeutic agents and discuss future developments of miRNA therapeutics.


Assuntos
Antagomirs/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/metabolismo , Animais , Antagomirs/farmacologia , Humanos , MicroRNAs/genética
2.
Curr Neuropharmacol ; 15(2): 260-275, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27396304

RESUMO

BACKGROUND: Neurodegenerative and cognitive disorders are multifactorial diseases (i.e., involving neurodevelopmental, genetic, age or environmental factors) characterized by an abnormal development that affects neuronal function and integrity. Recently, an increasing number of studies revealed that the dysregulation of microRNAs (miRNAs) may be involved in the etiology of cognitive disorders as Alzheimer, Parkinson, and Huntington's diseases, Schizophrenia and Autism spectrum disorders. METHODS: From an extensive search in bibliographic databases of peer-reviewed research literature, we identified relevant published studies related to specific key words such as memory, cognition, neurodegenerative disorders, neurogenesis and miRNA. We then analysed, evaluated and summerized scientific evidences derived from these studies. RESULTS: We first briefly summarize the basic molecular events involved in memory, a process inherent to cognitive disease, and then describe the role of miRNAs in neurodevelopment, synaptic plasticity and memory. Secondly, we provide an overview of the impact of miRNA dysregulation in the pathogenesis of different neurocognitive disorders, and lastly discuss the feasibility of miRNA-based therapeutics in the treatment of these disorders. CONCLUSION: This review highlights the molecular basis of neurodegenerative and cognitive disorders by focusing on the impact of miRNAs dysregulation in these pathological phenotypes. Altogether, the published reports suggest that miRNAs-based therapy could be a viable therapeutic alternative to current treatment options in the future.


Assuntos
Antagomirs/uso terapêutico , Transtornos Cognitivos/tratamento farmacológico , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/metabolismo , Animais , Antagomirs/farmacologia , Transtornos Cognitivos/genética , Bases de Dados Bibliográficas/estatística & dados numéricos , Regulação da Expressão Gênica/fisiologia , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Doenças Neurodegenerativas/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...