Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37425963

RESUMO

Impairments in social behavior are observed in a range of neuropsychiatric disorders and several lines of evidence have demonstrated that dysfunction of the prefrontal cortex (PFC) plays a central role in social deficits. We have previously shown that loss of neuropsychiatric risk gene Cacna1c that codes for the Cav1.2 isoform of L-type calcium channels (LTCCs) in the PFC result in impaired sociability as tested using the three-chamber social approach test. In this study we aimed to further characterize the nature of the social deficit associated with a reduction in PFC Cav1.2 channels (Cav1.2PFCKO mice) by testing male mice in a range of social and nonsocial tests while examining PFC neural activity using in vivo GCaMP6s fiber photometry. We found that during the first investigation of the social and non-social stimulus in the three-chamber test, both Cav1.2PFCKO male mice and Cav1.2PFCGFP controls spent significantly more time with the social stimulus compared to a non-social object. In contrast, during repeat investigations while Cav1.2PFCWT mice continued to spend more time with the social stimulus, Cav1.2PFCKO mice spent equal amount of time with both social and non-social stimuli. Neural activity recordings paralleled social behavior with increase in PFC population activity in Cav1.2PFCWT mice during first and repeat investigations, which was predictive of social preference behavior. In Cav1.2PFCKO mice, there was an increase in PFC activity during first social investigation but not during repeat investigations. These behavioral and neural differences were not observed during a reciprocal social interaction test nor during a forced alternation novelty test. To evaluate a potential deficit in reward-related processes, we tested mice in a three-chamber test wherein the social stimulus was replaced by food. Behavioral testing revealed that both Cav1.2PFCWT and Cav1.2PFCKO mice showed a preference for food over object with significantly greater preference during repeat investigation. Interestingly, there was no increase in PFC activity when Cav1.2PFCWT or Cav1.2PFCKO first investigated the food however activity significantly increased in Cav1.2PFCWT mice during repeat investigations of the food. This was not observed in Cav1.2PFCKO mice. In summary, a reduction in Cav1.2 channels in the PFC suppresses the development of a sustained social preference in mice that is associated with lack of PFC neuronal population activity that may be related to deficits in social reward.

2.
EMBO Mol Med ; 15(7): e16951, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37222423

RESUMO

Mitochondrial diseases are a heterogeneous group of monogenic disorders that result from impaired oxidative phosphorylation (OXPHOS). As neuromuscular tissues are highly energy-dependent, mitochondrial diseases often affect skeletal muscle. Although genetic and bioenergetic causes of OXPHOS impairment in human mitochondrial myopathies are well established, there is a limited understanding of metabolic drivers of muscle degeneration. This knowledge gap contributes to the lack of effective treatments for these disorders. Here, we discovered fundamental muscle metabolic remodeling mechanisms shared by mitochondrial disease patients and a mouse model of mitochondrial myopathy. This metabolic remodeling is triggered by a starvation-like response that evokes accelerated oxidation of amino acids through a truncated Krebs cycle. While initially adaptive, this response evolves in an integrated multiorgan catabolic signaling, lipid store mobilization, and intramuscular lipid accumulation. We show that this multiorgan feed-forward metabolic response involves leptin and glucocorticoid signaling. This study elucidates systemic metabolic dyshomeostasis mechanisms that underlie human mitochondrial myopathies and identifies potential new targets for metabolic intervention.


Assuntos
Doenças Mitocondriais , Miopatias Mitocondriais , Camundongos , Animais , Humanos , Miopatias Mitocondriais/genética , Miopatias Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Metabolismo Energético , Lipídeos
3.
Nat Commun ; 14(1): 2487, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120443

RESUMO

Social hierarchies exert a powerful influence on behavior, but the neurobiological mechanisms that detect and regulate hierarchical interactions are not well understood, especially at the level of neural circuits. Here, we use fiber photometry and chemogenetic tools to record and manipulate the activity of nucleus accumbens-projecting cells in the ventromedial prefrontal cortex (vmPFC-NAcSh) during tube test social competitions. We show that vmPFC-NAcSh projections signal learned hierarchical relationships, and are selectively recruited by subordinate mice when they initiate effortful social dominance behavior during encounters with a dominant competitor from an established hierarchy. After repeated bouts of social defeat stress, this circuit is preferentially activated during social interactions initiated by stress resilient individuals, and plays a necessary role in supporting social approach behavior in subordinated mice. These results define a necessary role for vmPFC-NAcSh cells in the adaptive regulation of social interaction behavior based on prior hierarchical interactions.


Assuntos
Comportamento Social , Interação Social , Camundongos , Animais , Córtex Pré-Frontal/fisiologia , Predomínio Social , Núcleo Accumbens
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...