Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
EFSA J ; 22(4): e8716, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681739

RESUMO

Following the submission of dossier GMFF-2022-3670 under Regulation (EC) No 1829/2003 from Corteva Agriscience Belgium BV and Bayer Agriculture BV, the Panel on genetically modified organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide-tolerant and insect-resistant genetically modified maize MON 89034 × 1507 × NK603, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and a search for additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in maize MON 89034 × 1507 × NK603 considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal dossier GMFF-2022-3670 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034 × 1507 × NK603.

2.
EFSA J ; 22(4): e8714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38681741

RESUMO

Genetically modified (GM) maize MON 94804 was developed to achieve a reduction in plant height by introducing the GA20ox_SUP suppression cassette. The molecular characterisation and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the agronomic/phenotypic and compositional differences identified between maize MON 94804 and its conventional counterpart needs further assessment, except for ear height, plant height and levels of carbohydrates in forage, which do not raise safety or nutritional concerns. The Panel on Genetically Modified Organisms (GMO Panel) does not identify safety concerns regarding the toxicity and allergenicity of the GA20ox_SUP precursor-miRNA and derived mature miRNA as expressed in maize MON 94804 and finds no evidence that the genetic modification would change the overall allergenicity of maize MON 94804. In the context of this application, the consumption of food and feed from maize MON 94804 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 94804 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 94804 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 94804. The GMO Panel concludes that maize MON 94804 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

3.
EFSA J ; 22(4): e8715, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38686342

RESUMO

Following the joint submission of dossier GMFF-2022-9170 under Regulation (EC) No 1829/2003 from Bayer Agriculture B.V. and Corteva Agriscience Belgium B.V., the Panel on genetically modified organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide tolerant and insect resistant genetically modified maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, an evaluation of the literature retrieved by a scoping review, a search for additional studies performed by or on behalf of the applicant and updated bioinformatics analyses. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal dossier GMFF-2022-9170 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 89034 × 1507 × MON 88017 × 59122 and 8 out of 10 of its subcombinations.

4.
EFSA J ; 22(3): e8655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38510324

RESUMO

Genetically modified maize DP202216 was developed to confer tolerance to glufosinate-ammonium-containing herbicides and to provide an opportunity for yield enhancement under field conditions. These properties were achieved by introducing the mo-pat and zmm28 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP202216 and its comparator needs further assessment, except for the levels of stearic acid (C18:0), which do not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the PAT and ZMM28 proteins as expressed in maize DP202216, and finds no evidence that the genetic modification would change the overall allergenicity of maize DP202216. In the context of this application, the consumption of food and feed from maize DP202216 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP202216 is as safe as the comparator and non-GM reference varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP202216 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP202216. The GMO Panel concludes that maize DP202216 is as safe as its comparator and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.

5.
EFSA J ; 22(1): e8490, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235311

RESUMO

Genetically modified maize DP915635 was developed to confer tolerance to glufosinate herbicide and resistance to corn rootworm pests. These properties were achieved by introducing the ipd079Ea, mo-pat and pmi expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP915635 and its conventional counterpart needs further assessment, except for the levels of crude protein in forage, which does not raise nutritional and safety concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the IPD079Ea, PAT and PMI proteins expressed in maize DP915635. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize DP915635. In the context of this application, the consumption of food and feed from maize DP915635 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize DP915635 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP915635 grains into the environment, this would not raise environmental safety concerns. The post market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP915635. The GMO Panel concludes that maize DP915635 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

6.
EFSA J ; 22(1): e8483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38239495

RESUMO

Genetically modified maize DP23211 was developed to confer control of certain coleopteran pests and tolerance to glufosinate-containing herbicide. These properties were achieved by introducing the pmi, mo-pat, ipd072Aa and DvSSJ1 expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize DP23211 and its conventional counterpart needs further assessment, except for those in levels of histidine, phenylalanine, magnesium, phosphorus and folic acid in grain, which do not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the IPD072Aa, PAT and PMI proteins and the DvSSJ1 dsRNA and derived siRNAs newly expressed in maize DP23211, and finds no evidence that the genetic modification impacts the overall safety of maize DP23211. In the context of this application, the consumption of food and feed from maize DP23211 does not represent a nutritional concern in humans and animals. Therefore, no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize DP23211 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize DP23211. The GMO Panel concludes that maize DP23211 is as safe as its conventional counterpart and the tested non-GM reference varieties with respect to potential effects on human and animal health and the environment.

7.
EFSA J ; 22(1): e8489, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38250501

RESUMO

Following the submission of dossier GMFF-2022-9450 under Regulation (EC) No 1829/2003 from Bayer Agriculture BV, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect protected genetically modified maize MON 810, for food and feed uses (including pollen), excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, an evaluation of the literature retrieved by a scoping review, additional studies performed by or on behalf of the applicant and updated bioinformatics analyses. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in maize MON 810 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in dossier GMFF-2022-9450 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on maize MON 810.

8.
EFSA J ; 21(10): e08312, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37908452

RESUMO

EFSA Strategy 2027 outlines the need for fit-for-purpose protocols for EFSA generic scientific assessments to aid in delivering trustworthy scientific advice. This EFSA Scientific Committee guidance document helps address this need by providing a harmonised and flexible framework for developing protocols for EFSA generic assessments. The guidance replaces the 'Draft framework for protocol development for EFSA's scientific assessments' published in 2020. The two main steps in protocol development are described. The first is problem formulation, which illustrates the objectives of the assessment. Here a new approach to translating the mandated Terms of Reference into scientifically answerable assessment questions and sub-questions is proposed: the 'APRIO' paradigm (Agent, Pathway, Receptor, Intervention and Output). Owing to its cross-cutting nature, this paradigm is considered adaptable and broadly applicable within and across the various EFSA domains and, if applied using the definitions given in this guidance, is expected to help harmonise the problem formulation process and outputs and foster consistency in protocol development. APRIO may also overcome the difficulty of implementing some existing frameworks across the multiple EFSA disciplines, e.g. the PICO/PECO approach (Population, Intervention/Exposure, Comparator, Outcome). Therefore, although not mandatory, APRIO is recommended. The second step in protocol development is the specification of the evidence needs and the methods that will be applied for answering the assessment questions and sub-questions, including uncertainty analysis. Five possible approaches to answering individual (sub-)questions are outlined: using evidence from scientific literature and study reports; using data from databases other than bibliographic; using expert judgement informally collected or elicited via semi-formal or formal expert knowledge elicitation processes; using mathematical/statistical models; and - not covered in this guidance - generating empirical evidence ex novo. The guidance is complemented by a standalone 'template' for EFSA protocols that guides the users step by step through the process of planning an EFSA scientific assessment.

9.
Nat Commun ; 14(1): 3892, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393406

RESUMO

To recognize DNA adducts, nucleotide excision repair (NER) deploys the XPC sensor, which detects damage-induced helical distortions, followed by engagement of TFIIH for lesion verification. Accessory players ensure that this factor handover takes place in chromatin where DNA is tightly wrapped around histones. Here, we describe how the histone methyltransferase ASH1L, once activated by MRG15, helps XPC and TFIIH to navigate through chromatin and induce global-genome NER hotspots. Upon UV irradiation, ASH1L adds H3K4me3 all over the genome (except in active gene promoters), thus priming chromatin for XPC relocations from native to damaged DNA. The ASH1L-MRG15 complex further recruits the histone chaperone FACT to DNA lesions. In the absence of ASH1L, MRG15 or FACT, XPC is misplaced and persists on damaged DNA without being able to deliver the lesions to TFIIH. We conclude that ASH1L-MRG15 makes damage verifiable by the NER machinery through the sequential deposition of H3K4me3 and FACT.


Assuntos
Cromatina , Histonas , Histonas/genética , Reparo do DNA , Metiltransferases
10.
EFSA J ; 21(6): e08011, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37284025

RESUMO

Genetically modified maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21 was developed by crossing to combine six single events: Bt11, MIR162, MIR604, MON 89034, 5307 and GA21, the GMO Panel previously assessed the 6 single maize events and 27 out of the 56 possible subcombinations and did not identify safety concerns. No new data on the single maize events or the assessed subcombinations were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in the six-event stack maize does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that six-event stack maize, as described in this application, is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable six-event stack maize grains into the environment, this would not raise environmental safety concerns. The GMO Panel assessed the likelihood of interactions among the single events in 29 of the maize subcombinations not previously assessed and covered by the scope of this application and concludes that these are expected to be as safe as the single events, the previously assessed subcombinations and the six-event stack maize. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize Bt11 × MIR162 × MIR604 × MON 89034 × 5307 × GA21. The GMO Panel concludes that six-event stack maize and the 30 subcombinations covered by the scope of the application are as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

11.
EFSA J ; 21(6): e08031, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37377664

RESUMO

Genetically modified cotton COT102 was developed to confer resistance against several lepidopteran species. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the differences in the agronomic-phenotypic and compositional characteristics between cotton COT102 and its non-GM comparator needs further assessment, except for levels of acid detergent fibre, which do not raise safety or nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the Vip3Aa19 and APH4 proteins as expressed in cotton COT102 and finds no evidence that the genetic modification would change the overall allergenicity of cotton COT102. In the context of this application, the consumption of food and feed from cotton COT102 does not represent a nutritional concern for humans and animals. The GMO Panel concludes that cotton COT102 is as safe as the non-GM comparator and non-GM cotton varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable cotton COT102 seeds into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of cotton COT102. The GMO Panel concludes that cotton COT102 is as safe as its non-GM comparator and the tested non-GM cotton varieties with respect to potential effects on human and animal health and the environment.

12.
EFSA J ; 21(4): e07934, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37122285

RESUMO

Following the submission of application EFSA-GMO-RX-024 under Regulation (EC) No 1829/2003 from BASF Agricultural Solutions Seed US LLC, the Panel on Genetically Modified Organisms of EFSA was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide tolerant genetically modified oilseed rape MS8, RF3 and MS8 × RF3, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in oilseed rape MS8, RF3 and MS8 × RF3 considered for renewal are identical to the sequences of the originally assessed events, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-024 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on oilseed rape MS8, RF3 and MS8 × RF3.

13.
EFSA J ; 21(4): e07935, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37077301

RESUMO

The European Commission requested the Panel on Genetically Modified Organisms of the European Food Safety Authority (EFSA GMO Panel) to assess new scientific information on maize MIR162, and to indicate whether the previous conclusions on the safety of maize MIR162 as a single event and as a part of stacked events remain valid. The new information is included in a European patent that reports a decrease in male fertility in some MIR162 inbred lines, pointing to a potential link between such decrease and the Vip3 protein expressed by maize MIR162. The EFSA GMO Panel evaluated the data provided by the patent owner and found scarce support for a causal link between Vip3 and decreased fertility. The general hypothesis of an association between event MIR162 and altered fertility could not be confirmed. The EFSA GMO Panel conducted the safety assessment based on the conservative assumption that such an association exists. The EFSA GMO Panel concluded that a decrease in male fertility would have no impact on the previous conclusions on maize MIR162 and stacked events containing MIR162.

14.
EFSA J ; 21(1): e07729, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36721864

RESUMO

Genetically modified maize GA21 × T25 was developed by crossing to combine two single events: GA21 and T25. The GMO Panel previously assessed the two single maize events and did not identify safety concerns. No new data on the single maize events were identified that could lead to modification of the original conclusions on their safety. The molecular characterisation, comparative analysis (agronomic, phenotypic and compositional characteristics) and the outcome of the toxicological, allergenicity and nutritional assessment indicate that the combination of the single maize events and of the newly expressed proteins in maize GA21 × T25 does not give rise to food and feed safety and nutritional concerns. The GMO Panel concludes that maize GA21 × T25, as described in this application, is as safe as its conventional counterpart and the non-GM reference varieties tested, and no post-market monitoring of food and feed is considered necessary. In the case of accidental release of viable maize GA21 × T25 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize GA21 × T25. Post-market monitoring of food and feed is not considered necessary. The GMO Panel concludes that maize GA21 × T25 is as safe as its conventional counterpart and the non-GM reference varieties tested, with respect to potential effects on human and animal health and the environment.

15.
EFSA J ; 21(1): e07732, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36698485

RESUMO

EFSA carries out the risk assessment of genetically modified plants for food and feed uses under Regulation (EU) No 503/2013. Exposure assessment - anticipated intake/extend of use shall be an essential element of the risk assessment of genetically modified feeds, as required by Regulation (EU) No 503/2013. Estimates of animal dietary exposure to newly expressed proteins should be determined to cover average consumption across all the different species, age, physiological and productive phases of farmed and companion animals, and identify and consider particular consumer groups with expected higher exposure. This statement is aimed at facilitating the reporting of the information that applicants need to provide on expected animal dietary exposure to newly expressed proteins and to increase harmonisation of the application dossiers to be assessed by the EFSA GMO Panel. Advice is provided on the selection of proper feed consumption and feed concentration data, and on the reporting of exposure's estimates. An overview of the different uncertainties that may be linked to the estimations is provided. This statement also explains how to access an Excel calculator which should be used in future applications as basis to provide a more consistent presentation of estimates of expected animal dietary exposure.

16.
EFSA J ; 21(1): e07730, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36698492

RESUMO

Genetically modified maize MON 87419 was developed to confer tolerance to dicamba- and glufosinate-based herbicides. These properties were achieved by introducing the dmo and pat expression cassettes. The molecular characterisation data and bioinformatic analyses do not identify issues requiring food/feed safety assessment. None of the identified differences in the agronomic/phenotypic and compositional characteristics tested between maize MON 87419 and its conventional counterpart needed further assessment, except for the levels of arginine and protein in grains which did not raise safety and nutritional concerns. The GMO Panel does not identify safety concerns regarding the toxicity and allergenicity of the dicamba mono-oxygenase (DMO) and phosphinothricin N-acetyltransferase (PAT) proteins as expressed in maize MON 87419. The GMO Panel finds no evidence that the genetic modification impacts the overall safety of maize MON 87419. In the context of this application, the consumption of food and feed from maize MON 87419 does not represent a nutritional concern in humans and animals. The GMO Panel concludes that maize MON 87419 is as safe as the conventional counterpart and non-GM maize varieties tested, and no post-market monitoring of food/feed is considered necessary. In the case of accidental release of viable maize MON 87419 grains into the environment, this would not raise environmental safety concerns. The post-market environmental monitoring plan and reporting intervals are in line with the intended uses of maize MON 87419. The GMO Panel concludes that maize MON 87419 is as safe as its conventional counterpart and the tested non-GM maize varieties with respect to potential effects on human and animal health and the environment.

17.
Trends Biochem Sci ; 48(4): 321-330, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36357311

RESUMO

The concept of the histone code posits that histone modifications regulate gene functions once interpreted by epigenetic readers. A well-studied case is trimethylation of lysine 4 of histone H3 (H3K4me3), which is enriched at gene promoters. However, H3K4me3 marks are not needed for the expression of most genes, suggesting extra roles, such as influencing the 3D genome architecture. Here, we highlight an intriguing analogy between the H3K4me3-dependent induction of double-strand breaks in several recombination events and the impact of this same mark on DNA incisions for the repair of bulky lesions. We propose that Su(var)3-9, Enhancer-of-zeste and Trithorax (SET)-domain methyltransferases generate H3K4me3 to guide nucleases into chromatin spaces, the favorable accessibility of which ensures that DNA break intermediates are readily processed, thereby safeguarding genome stability.


Assuntos
Cromatina , Metiltransferases , Metiltransferases/metabolismo , Metilação , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica
18.
EFSA J ; 20(12): e07684, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36545567

RESUMO

Following the submission of application EFSA-GMO-RX-022 under Regulation (EC) No 1829/2003 from Bayer CropScience LP, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant and herbicide-tolerant genetically modified soybean MON 87701 × MON 89788, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the events in soybean MON 87701 × MON 89788 considered for renewal are identical to the sequences of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-022 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on soybean MON 87701 × MON 89788.

19.
EFSA J ; 20(12): e07685, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36545569

RESUMO

Following the submission of application EFSA-GMO-RX-023 under Regulation (EC) No 1829/2003 from Bayer Agriculture BV on behalf of Bayer CropScience LP, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the herbicide-tolerant genetically modified soybean 40-3-2, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses, and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequence of the event in soybean 40-3-2 considered for renewal is identical to the sequence of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-023 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on soybean 40-3-2.

20.
EFSA J ; 20(12): e07683, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36545571

RESUMO

Following the submission of application EFSA-GMO-RX-021 under Regulation (EC) No 1829/2003 from Bayer CropScience LP, the Panel on Genetically Modified Organisms of the European Food Safety Authority was asked to deliver a scientific risk assessment on the data submitted in the context of the renewal of authorisation application for the insect-resistant genetically modified soybean MON 87701, for food and feed uses, excluding cultivation within the European Union. The data received in the context of this renewal application contained post-market environmental monitoring reports, a systematic search and evaluation of literature, updated bioinformatic analyses and additional documents or studies performed by or on behalf of the applicant. The GMO Panel assessed these data for possible new hazards, modified exposure or new scientific uncertainties identified during the authorisation period and not previously assessed in the context of the original application. Under the assumption that the DNA sequences of the event in soybean MON 87701 considered for renewal is identical to the sequences of the originally assessed event, the GMO Panel concludes that there is no evidence in renewal application EFSA-GMO-RX-021 for new hazards, modified exposure or scientific uncertainties that would change the conclusions of the original risk assessment on soybean MON 87701.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...