Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(14): 16334-16345, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38617612

RESUMO

The growing concerns about environmental pollution, particularly water pollution, are causing an increasing alarm in modern society. One promising approach to address this issue involves engineering existing materials to enhance their effectiveness. A one-step solvothermal reconstruction approach was used to build an eco-friendly two-dimensional (2D) AlNiZn-LDH/BDC MOF composite. The characterizations confirm the formation of a metal-organic framework (MOF) at the layered double hydroxide (LDH) surface. The resulting synthesized material, 2D AlNiZn-LDH/BDC MOF, demonstrated remarkable efficacy in decontaminating methylene blue (MB), a model cationic dye found in water systems. The removal performance of 2D AlNiZn-LDH/BDC MOF was significantly higher than that of pristine 2D AlNiZn-LDH. This improvement shows the potential to increase the adsorption capabilities of nanoporous LDH materials by incorporating organic ligands and integrating meso-/microporosity through MOF formation on their surfaces. Furthermore, their kinetic, isothermal, and thermodynamic studies elucidated the adsorption behavior of this composite material. The results of synthesized MOF showed excellent removal efficiency (92.27%) of 10 ppm of MB aqueous solution as compared to pristine LDH. Additionally, the as-synthesized adsorbent could be regenerated for six successive cycles. This method holds promise for the synthesis of novel and highly effective materials to combat water pollution, laying the groundwork for potential advancements in diverse applications.

2.
Food Chem ; 449: 139256, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38636286

RESUMO

In this report, we firstly synthesized nitro calix [4] resorcinarene compound (referred as KA30) and characterized it though proton (1H) nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS) and Fourier Transform Infra-red (FTIR) spectroscopy. KA30 was applied as functionalizing agent for the formation of silver nanoparticles (KA30-AgNPs). These NPs were confirmed as highly selective and extremely sensitive colorimetric sensor for ultra-low level detection of emamectin (EMA) as a novel report. Significant aspect of the sensor is its unique detection range between 0.0005 and 29.5 µM via color change from yellow to colorless with hypochromic-bathochromic shift exhibiting limit of detection (LOD) and limit of quantification (LOQ) as 0.12 nM and 0.4 nM respectively. The sensor was applied to colorimetrically and optically detect EMA in real samples of serum, urine and food. The sensor was further allied with smartphone for real-time, and on-site detection of EMA and results were validated through UPLC.


Assuntos
Colorimetria , Contaminação de Alimentos , Ivermectina , Nanopartículas Metálicas , Prata , Smartphone , Prata/química , Colorimetria/métodos , Nanopartículas Metálicas/química , Contaminação de Alimentos/análise , Ivermectina/análogos & derivados , Ivermectina/química , Ivermectina/análise , Limite de Detecção , Calixarenos/química , Humanos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
3.
Adv Mater ; : e2313747, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685565

RESUMO

Recovering platinum group metals from secondary resources is crucial to meet the growing demand for high-tech applications. Various techniques are explored, and adsorption using porous materials has emerged as a promising technology due to its efficient performance and environmental beingness. However, the challenge lies in effectively recovering and separating individual platinum group metals (PGMs) given their similar chemical properties. Herein, a breakthrough approach is presented by sophisticatedly tailoring the coordination micro-environment in a series of aminopyridine-based porous organic polymers, which enables the creation of platinum-specific nanotraps for efficient separation of binary PGMs (platinum/palladium). The newly synthesized POP-o2NH2-Py demonstrates record uptakes and selectivity toward platinum over palladium, with the amino groups adjacent to the pyridine moieties being vital in improving platinum binding performance. Further breakthrough experiments underline its remarkable ability to separate platinum and palladium. Spectroscopic analysis reveals that POP-o2NH2-Py offers a more favorable coordination fashion to platinum ions compared to palladium ions owing to the greater interaction between N and Pt4+ and stronger intramolecular hydrogen bonding between the amino groups and four coordinating chlorines at platinum. These findings underscore the importance of fine-tuning the coordination micro-environment of nanotraps through subtle modifications that can greatly enhance the selectivity toward the desired metal ions.

4.
Bioorg Chem ; 147: 107410, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38688197

RESUMO

A new series of benzene-sulfonamide derivatives 3a-i was designed and synthesized via the reaction of N-(pyrimidin-2-yl)cyanamides 1a-i with sulfamethazine sodium salt 2 as dual Src/Abl inhibitors. Spectral data IR, 1H-, 13C- NMR and elemental analyses were used to confirm the structures of all the newly synthesized compounds 3a-i and 4a-i. Crucially, we screened all the synthesized compounds 3a-i against NCI 60 cancer cell lines. Among all, compound 3b was the most potent, with IC50 of 0.018 µM for normoxia, and 0.001 µM for hypoxia, compared to staurosporine against HL-60 leukemia cell line. To verify the selectivity of this derivative, it was assessed against a panel of tyrosine kinase EGFR, VEGFR-2, B-raf, ERK, CK1, p38-MAPK, Src and Abl enzymes. Results revealed that compound 3b can effectively and selectively inhibit Src/Abl with IC500.25 µM and Abl inhibitory activity with IC500.08 µM, respectively, and was found to be more potent on these enzymes than other kinases that showed the following results: EGFR IC500.31 µM, VEGFR-2 IC500.68 µM, B-raf IC500.33 µM, ERK IC501.41 µM, CK1 IC500.29 µM and p38-MAPK IC500.38 µM. Moreover, cell cycle analysis and apoptosis performed to compound 3b against HL-60 suggesting its antiproliferative activity through Src/Abl inhibition. Finally, molecular docking studies and physicochemical properties prediction for compounds 3b, 3c, and 3 h were carried out to investigate their biological activities and clarify their bioavailability.

5.
J Am Chem Soc ; 146(11): 7341-7351, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442250

RESUMO

The C2H2 separation from CO2 and C2H4 is of great importance yet highly challenging in the petrochemical industry, owing to their similar physical and chemical properties. Herein, the pore nanospace engineering of cage-like mixed-ligand MFOF-1 has been accomplished via contracting the size of the pyridine- and carboxylic acid-functionalized linkers and introducing a fluoride- and sulfate-bridging cobalt cluster, based on a reticular chemistry strategy. Compared with the prototypical MFOF-1, the constructed FJUT-1 with the same topology presents significantly improved C2H2 adsorption capacity, and selective C2H2 separation performance due to the reduced cage cavity size, functionalized pore surface, and appropriate pore volume. The introduction of fluoride- and sulfate-bridging cubane-type tetranuclear cobalt clusters bestows FJUT-1 with exceptional chemical stability under harsh conditions while providing multiple potential C2H2 binding sites, thus rendering the adequate ability for practical C2H2 separation application as confirmed by the dynamic breakthrough experiments under dry and humid conditions. Additionally, the distinct binding mechanism is suggested by theoretical calculations in which the multiple supramolecular interactions involving C-H···O, C-H···F, and other van der Waals forces play a critical role in the selective C2H2 separation.

6.
Chemosphere ; 350: 141080, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163467

RESUMO

The chemical conversion of plastic waste into metal-organic framework (MOF) materials has emerged as a significant research field in addressing issues associated to the environment and the economy. The significant advantages of MOFs as electrode material for energy/supercapacitors arises from their extensive surface area and notable porosity. The present study involved the synthesis of Zirconium-Metal Organic Frameworks (Zr-MOF) by the solvothermal method, utilizing plastic waste in the form of Polyethylene terephthalate (PET) bottles. The morphological and structural characteristics of the Zr-MOF were inspected through several analytical techniques, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier-transform infrared spectroscopy analysis. The as prepared Zr-MOF demonstrated very high specific surface area of 927.567 m2 g-1 with mesoporous nature of the materials estimate by BJH method. The electrochemical characteristics of the Zr-MOF in 3-electrode system exhibited a notable specific capacitance of 822 F g-1 when subjected to a low scan rate of 2 mV S-1, while the specific capacitance estimated through galvanostatic charge-discharge exhibited an enhanced value of 890 F g-1 at a current density of 0.5 A g-1. Additionally, the working electrode composed of Zr-MOF demonstrated noteworthy capacitance retention of 92% after 5000 charge discharge cycles. This research presents novel opportunities for the utilization of waste PET bottles in fabrication of highly functional Zr-MOF, aiming to advance the development of next-generation supercapacitors and environmental remediation.


Assuntos
Recuperação e Remediação Ambiental , Estruturas Metalorgânicas , Polietilenotereftalatos , Capacitância Elétrica , Eletrodos
7.
Chem Asian J ; : e202301100, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38275189

RESUMO

Doping conventional materials with a second element is an exciting strategy for enhancing catalytic performance via electronic structure modifications. Herein, Mn-doped CdS thin films were successfully synthesized with the aid of the chemical bath deposition (CBD) by varying the pH value (8, 10, and 12) and the surfactant amount (20, 40, 60 mg). Different morphologies like nano-cubes, nanoflakes, nano-worms, and nanosheets were obtained under different deposition conditions. The optimized Mn-doped CdS synthesized at pH=8 exhibited better photoelectrochemical (PEC) performance for oxygen evolution reaction (OER) than pure CdS films, with a maximum photocurrent density of 300 µA/cm2 at an external potential of 0.5 V, under sunlight illumination. The observed performance is attributed to the successful Mn doping, porosity, high surface area, and nanosphere morphology.

8.
Sci Rep ; 14(1): 2453, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291040

RESUMO

The construction of highly efficient electrode material is of considerable interest, particularly for high capacitance and water-splitting applications. Herein, we present the preparation of a NiCo2O4-Chitosan (NC@Chit) nanocomposite using a simple hydrothermal technique designed for applications in high capacitance and water-splitting. The structure/composition of the NC@Chit composite was characterized using different analytical methods, containing electron microscope (SEM and TEM), and powder X-ray diffraction (XRD). When configured as an anode material, the NC@Chit displayed a high capacitance of 234 and 345 F g-1 (@1Ag-1 for GC/NC and NC@Chit, respectively) in an alkaline electrolyte. The direct use of the catalyst in electrocatalytic water-splitting i.e., HER and OER achieved an overpotential of 240 mV and 310 mV at a current density of 10 mA cm-2, respectively. The obtained Tafel slopes for OER and HER were 62 and 71 mV dec-1, respectively whereas the stability and durability of the fabricated electrodes were assessed through prolonged chronoamperometry measurement at constant for 10 h. The electrochemical water splitting was studied for modified nickel cobaltite surface using an impedance tool, and the charge transfer resistances were utilized to estimate the electrode activity.

9.
Small ; 20(12): e2306940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38127968

RESUMO

The development of external stimuli-controlled payload systems has been sought after with increasing interest toward magnetothermally-triggered drug release (MTDR) carriers due to their non-invasive features. However, current MTDR carriers present several limitations, such as poor heating efficiency caused by the aggregation of iron oxide nanoparticles (IONPs) or the presence of antiferromagnetic phases which affect their efficiency. Herein, a novel MTDR carrier is developed using a controlled encapsulation method that fully fixes and confines IONPs of various sizes within the metal-organic frameworks (MOFs). This novel carrier preserves the MOF's morphology, porosity, and IONP segregation, while enhances heating efficiency through the oxidation of antiferromagnetic phases in IONPs during encapsulation. It also features a magnetothermally-responsive nanobrush that is stimulated by an alternating magnetic field to enable on-demand drug release. The novel carrier shows improved heating, which has potential applications as contrast agents and for combined chemo and magnetic hyperthermia therapy. It holds a great promise for magneto-thermally modulated drug dosing at tumor sites, making it an exciting avenue for cancer treatment.


Assuntos
Antineoplásicos , Hipertermia Induzida , Estruturas Metalorgânicas , Portadores de Fármacos , Campos Magnéticos
10.
J Colloid Interface Sci ; 658: 758-771, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38150932

RESUMO

Solar-driven desalination is considered an alternative to the conventional desalination due to its nearly zero carbon footprint and ease of operating in remote areas. Water can be purified wherever sunlight is available, providing a viable solution to water shortage. Metal chalcogenide-based materials are revolutionary for solar evaporators due to their excellent photothermal conversion efficiency, facile synthesis methods, stability, and low cost. Herein we present a prototype Bi-doped CoTe nano-solar evaporator embedded on leno weave cotton gauze (Bi/CoTe@CG) using the sonication process. The nano-solar evaporator was synthesized using a simple hydrothermal approach to provide an opportunity to scale up. The as designed solar evaporator consisting of 5 % Bi/CoTe@CG showed an excellent water flux of 2.38 kg m-2 h-1 upon one sun radiation (1 kW m-2), considered among the highest literature-reported values. The introduced solar evaporator showed excellent solar efficiency of 96.7 %, good stability, and reusability for five cycles of one hour. The best doping ratio of Bi in CoTe was obtained as Bi0.5Co9.5Te with a contact angle of 11.9° in powder form. The hydrophilic nature of the designed solar-evaporator increased the water interaction with the embedded nano-solar evaporator, which helps the transfer of the heat to nearby water molecules, break their hydrogen bonding and increase the evaporation rate. The ion concentration, of the desalinated pure water collected using Bi/CoTe@CG, decreased by many orders of magnitude and it is far below the limit of WHO standards for Na+ and K+. Thus, a self-floating Bi-doped CoTe nano-solar evaporator deposited on cotton gauze (CG) is an excellent solar evaporator for seawater desalination. The proposed solar evaporator is another step towards introducing environmentally friendly desalination methods.

11.
J Agric Food Chem ; 71(46): 17627-17634, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37941360

RESUMO

The reaction of ethyl 5-cyano-2-methyl-4-(thiophen-2-yl)-6-thioxo-1,6-dihydropyridine-3-carboxylate (1) with 2-chloroacetamide or its N-aryl derivatives gave ethyl 6-((2-amino-2-oxoethyl)thio)-5-cyano-2-methyl-4-(thiophen-2-yl) nicotinate (2a) or its N-aryl derivatives 2b-f, respectively. Cyclization of 2a-f into their isomers 3a-f was carried out by heating in absolute ethanol in the presence of a catalytic amount of sodium ethoxide. The o-aminoamide 3a was reacted with some aryl aldehydes in refluxing ethanol containing a few drops of conc. HCl to afford the corresponding tetrahydropyrimidinones 4a-d. The cyclocondensation reaction of 3a with some cycloalkanones such as cyclopentanone and cyclohexanone gave the corresponding spiro compounds 5a,b. The crystal structures of compounds 2a and 2d were determined by single-crystal X-ray diffraction techniques. All new compounds were evaluated for their insecticidal activity toward nymphs and adults of Aphis gossypi.


Assuntos
Inseticidas , Inseticidas/farmacologia , Piridinas/química , Ciclização , Etanol
12.
Chem Asian J ; : e202300870, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37943100

RESUMO

Amorphous inorganic perovskites have attracted significant attention as efficient electrocatalysts due to their unique structural flexibility and good catalytic activity. In particular, the disordered structure and a surface rich in defects such as oxygen vacancies can contribute to the superior electrocatalytic activity of amorphous oxides compared to their crystalline counterpart. In this work, we report the synthesis of LaCoO3 , followed by an amorphization process through urea reduction with tailored modifications. The as-synthesized catalysts were thoroughly tested for their performance in oxygen evolution reaction (OER), Remarkably, the amorphous LaCoO3 synthesized at 450 °C (referred to as LCO-4) exhibits excellent OER catalytic activity. At an overpotential of 310 mV, it achieved a current density of 10 mA/cm-2 , exceedingly fast to 1 A/cm-2 at an overpotential of only 460 mV. Moreover, LCO-4 exhibited several advantageous features compared to pristine LaCoO3 and LaCoO3 amorphized at other two temperatures (350 °C, LCO-3, and 550 °C, LCO-5). The amorphized LCO-4 catalyst showed a higher electrochemically active surface area, a key factor in boosting catalytic performance. Additionally, LCO-4 demonstrated the lowest Tafel slope of 70 mVdec-1 , further highlighting its exceptional OER activity. Furthermore, the long-term stability of LCO-4 is notably superior than pristine LaCoO3 (LCO-P) and the other amorphized samples (LCO-3 and LCO-5). The enhanced catalytic activity of LCO-4 can be attributed to its unique disordered structure, small crystallite size, and higher concentration of oxygen vacancies in the final catalyst.

13.
RSC Adv ; 13(46): 32413-32423, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37928849

RESUMO

In response to the increasing availability of hydrogen energy and renewable energy sources, molybdenum disulfide (MoS2)-based electrocatalysts are becoming increasingly important for efficient electrochemical water splitting. This study involves the incorporation of palladium nanoparticles (PdNPs) into hydrothermally grown MoS2via a UV light assisted process to afford PdNPs@MoS2 as an alternative electrocatalyst for efficient energy storage and conversion. Various analytical techniques, including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive spectroscopy (EDS), were used to investigate the morphology, crystal quality, and chemical composition of the samples. Although PdNPs did not alter the MoS2 morphology, oxygen evolution reaction (OER) activity was driven at considerable overpotential. When electrochemical water splitting was performed in 1.0 M KOH aqueous solution with PdNPs@MoS2 (sample-2), an overpotential of 253 mV was observed. Furthermore, OER performance was highly favorable through rapid reaction kinetics and a low Tafel slope of 59 mV dec-1, as well as high durability and stability. In accordance with the electrochemical results, sample-2 showed also a lower charge transfer resistance, which again provided evidence of OER activity. The enhanced OER activity was attributed to a number of factors, including structural, surface chemical compositions, and synergistic effects between MoS2 and PdNPs.

14.
RSC Adv ; 13(48): 34122-34135, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38019984

RESUMO

Researchers are increasingly focusing on using biomass waste for green synthesis of nanostructured materials since green reducing, capping, stabilizing and orientation agents play a significant role in final application. Wheat peel extract contains a rich source of reducing and structure orienting agents that are not utilized for morphological transformation of NiO nanostructures. Our study focuses on the role of wheat peel extract in morphological transformation during the synthesis of NiO nanostructures as well as in non-enzymatic electrochemical urea sensing. It was observed that the morphological transformation of NiO flakes into nanoplatelets took place in the presence of wheat peel extract during the preparation of NiO nanostructures and that both the lateral size and thickness of the nanostructures were significantly reduced. Wheat peel extract was also found to reduce the optical band gap of NiO. A NiO nanostructure prepared with 5 mL of wheat peel extract (sample 2) was highly efficient for the detection of urea without the use of urease enzyme. It has been demonstrated that the induced modification of NiO nanoplatelets through the use of structure-orienting agents in the wheat peel has enhanced their electrochemical performance. A linear range of 0.1 mM to 13 mM was achieved with a detection limit of 0.003 mM in the proposed urea sensor. The performance of the presented non-enzymatic urea sensor was evaluated in terms of selectivity, stability, reproducibility, and practical application, and the results were highly satisfactory. As a result of the high surface active sites on sample 2, the low charge transfer resistance, as well as the high exposure to the surface active sites of wheat peel extract, sample 2 demonstrated enhanced performance. The wheat peel extract could be used for the green synthesis of a wide range of nanostructured materials, particularly metal/metal oxides for various electrochemical applications.

15.
Nat Commun ; 14(1): 7022, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919267

RESUMO

Crystalline porous materials such as covalent organic frameworks (COFs), metal-organic frameworks (MOFs) and porous organic cages (POCs) have been widely applied in various fields with outstanding performances. However, the lack of general and effective methodology for large-scale production limits their further industrial applications. In this work, we developed a general approach comprising high pressure homogenization (HPH), which can realize large-scale synthesis of crystalline porous materials including COFs, MOFs, and POCs under benign conditions. This universal strategy, as illustrated in the proof of principle studies, has prepared 4 COFs, 4 MOFs, and 2 POCs. It can circumvent some drawbacks of existing approaches including low yield, high energy consumption, low efficiency, weak mass/thermal transfer, tedious procedures, poor reproducibility, and high cost. On the basis of this approach, an industrial homogenizer can produce 0.96 ~ 580.48 ton of high-performance COFs, MOFs, and POCs per day, which is unachievable via other methods.

16.
J Environ Health Sci Eng ; 21(2): 441-454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37869593

RESUMO

Herein, the selectivity/simultaneously adsorption associated with Congo Red (CR) and Methylene Blue (MB) has been efficiently undertaken via amorphous perlite. Under optimum conditions of 38 min, 96 mg/L and 312°K for the contact time, the dye concentration, and the temperature, respectively, the optimization study using central composite design (CCD) matrix gave rise to high adsorption yields of 82.22 and 96.65% for CR and MB, respectively. Importantly, kinetic and isotherm studies attested that the batch adsorption occurs as intra-diffusional mass transport onto porous material. The obtained thermodynamic parameters are indicative of an endothermic/spontaneous physisorption process. Whereas SEM-EDS characterization revealed the superficial adsorption process of both CR and MB onto perlite. In addition, the FTIR analysis suggests that the adsorption process disrupted the short-range compounds order of perlite samples, revealing the marked crystallinity decrease of the adsorbent after adsorption. Finally, application of these optimum conditions tests on real industrial wastewater show that the adsorption was simultaneous at neutral pH and at 312°K, whereas CR and MB can be selectively adsorbed at pH 4 and 9, respectively. Supplementary Information: The online version contains supplementary material available at 10.1007/s40201-023-00870-1.

17.
Biosensors (Basel) ; 13(8)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37622866

RESUMO

The ability to measure uric acid (UA) non-enzymatically in human blood has been demonstrated through the use of a simple and efficient electrochemical method. A phytochemical extract from radish white peel extract improved the electrocatalytic performance of nickel-cobalt bimetallic oxide (NiCo2O4) during a hydrothermal process through abundant surface holes of oxides, an alteration of morphology, an excellent crystal quality, and increased Co(III) and Ni(II) chemical states. The surface structure, morphology, crystalline quality, and chemical composition were determined using a variety of analytical techniques, including powder X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and X-ray photoelectron spectroscopy (XPS). The electrochemical characterization by CV revealed a linear range of UA from 0.1 mM to 8 mM, with a detection limit of 0.005 mM and a limit of quantification (LOQ) of 0.008 mM. A study of the sensitivity of NiCo2O4 nanostructures modified on the surface to UA detection with amperometry has revealed a linear range from 0.1 mM to 4 mM for detection. High stability, repeatability, and selectivity were associated with the enhanced electrochemical performance of non-enzymatic UA sensing. A significant contribution to the full outperforming sensing characterization can be attributed to the tailoring of surface properties of NiCo2O4 nanostructures. EIS analysis revealed a low charge-transfer resistance of 114,970 Ohms that offered NiCo2O4 nanostructures prepared with 5 mL of radish white peel extract, confirming an enhanced performance of the presented non-enzymatic UA sensor. As well as testing the practicality of the UA sensor, blood samples from human beings were also tested for UA. Due to its high sensitivity, stability, selectivity, repeatability, and simplicity, the developed non-enzymatic UA sensor is ideal for monitoring UA for a wide range of concentrations in biological matrixes.


Assuntos
Nanoestruturas , Raphanus , Humanos , Ácido Úrico
18.
RSC Adv ; 13(34): 23547-23557, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37555091

RESUMO

Developing an efficient and non-precious bifunctional catalyst capable of performing water splitting and organic effluent degradation in wastewater is a great challenge. This article reports an efficient bifunctional nanocatalyst based on NiCo2O4, synthesized using a simple one-pot co-precipitation method. We optimized the synthesis conditions by varying the synthesis pH and sodium dodecyl sulfate (SDS) concentrations. The prepared catalyst exhibited excellent catalytic activity for the electrochemical oxygen evolution reaction (OER) and simultaneous methylene blue (MB) dye degradation. Among the catalysts, the catalyst synthesized using 1 g SDS as a surfactant at 100 °C provided the highest current density (658 mA cm-2), lower onset potential (1.34 V vs. RHE), lower overpotential (170 mV @ 10 mA cm-2), and smallest Tafel slope (90 mV dec-1) value. Furthermore, the OH˙ radicals produced during the OER electrochemically degraded the MB to 90% within 2 hours. The stability test conducted at 20 mA cm-2 showed almost negligible loss of the electrochemical response for OER, with 99% retention of the original response. These results strongly suggest that this catalyst is a promising candidate for addressing the challenges of wastewater treatment and energy generation.

19.
ACS Cent Sci ; 9(8): 1692-1701, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37637733

RESUMO

The development of efficient heterogeneous catalysts with multiselectivity (e.g., enantio- and chemoselectivity) has long been sought after but with limited progress being made so far. To achieve enantio- and chemoselectivity in a heterogeneous system, as inspired by enzymes, we illustrate herein an approach of creating an enzyme-mimic region (EMR) within the nanospace of a metal-organic framework (MOF) as exemplified in the context of incorporating a chiral frustrated Lewis pair (CFLP) into a MOF with a tailored pore environment. Due to the high density of the EMR featuring the active site of CFLP and auxiliary sites of the hydroxyl group/open metal site within the vicinity of CFLP, the resultant EMR@MOF demonstrated excellent catalysis performance in heterogeneous hydrogenation of α,ß-unsaturated imines to afford chiral ß-unsaturated amines with high yields and high enantio- and chemoselectivity. The role of the hydroxyl group/open metal site in regulating chemoselectivity was proved by the observation of a catalyst-substrate interaction experimentally, which was also rationalized by computational results. This work not only contributes a MOF as a new platform for multiselective catalysis but also opens a promising avenue to develop heterogeneous catalysts with multiselectivity for challenging yet important transformations.

20.
Environ Res ; 234: 116550, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437862

RESUMO

A facile two-step hydrothermal method was successfully used to prepare a photocatalyst Bi2WO6/WS2 heterojunction for methyl blue (MB) photodegradation. Fabricated photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray analysis (EDX), and X-ray photoelectron spectroscopy (XPS). Band gap measurements were carried out by diffuse reflectance spectroscopy (DRS). Results indicated that the prepared heterostructure photocatalyst has increased visible light absorption. Photocatalytic performance was evaluated under sunlight irradiation for methylene blue (MB) degradation as a model dye. Variations in pH (4-10), amount of catalyst (0.025-0.1 g/L), and initial MB concentrations (5-20 ppm) were carried out, whereas all prepared catalysts were used to conduct the tests with a visible spectrophotometer. Degradation activity improved with the pH increase; the optimum pH was approximately 8. Catalyst concentration is directly related to degradation efficiency and reached 93.56% with 0.075 g of the catalyst. Among tested catalysts, 0.01 Bi2WO6/WS2 has exhibited the highest activity and a degradation efficiency of 99.0% in 40 min (min) for MB. MB photodegradation follows pseudo-first-order kinetics, and obtained values of kapp were 0.0482 min-1, 0.0337 min-1, 0.0205 min-1, and 0.0087 min-1 for initial concentrations of 5 ppm, 10 ppm, 15 ppm, and 20 ppm, respectively. The catalyst was reused for six cycles with a negligible decrease in the degradation activity. Heterostructure 0.01 Bi2WO6/WS2 has exhibited a photocurrent density of 16 µA cm-2, significantly higher than 2.0 and 4.5 µA cm-2 for the pristine WS2 and Bi2WO6, respectively. The findings from these investigations may serve as a crucial stepping stone towards the remediation of polluted water facilitated by implementing such highly efficient photocatalysts.


Assuntos
Azul de Metileno , Luz Solar , Azul de Metileno/química , Fotólise , Luz , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...