Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Noncoding RNA Res ; 8(2): 211-217, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36865391

RESUMO

Bronchial asthma, commonly known as asthma, is a chronic inflammatory disease characterized by airway inflammation, increased responsiveness and changes in airway structure. T cells, particularly T helper cells, play a crucial role in the disease. Non-coding RNAs, which are RNAs that do not code for proteins, mainly include microRNAs, long non-coding RNAs, and circular RNAs, play a role in regulating various biological processes. Studies have shown that non-coding RNAs have an important role in the activation and transformation of T cells and other biological processes in asthma. The specific mechanisms and clinical applications are worth further examination. This article reviews the recent research on the role of microRNAs, long non-coding RNAs and circular RNAs in T cells in asthma.

2.
Noncoding RNA Res ; 8(1): 1-7, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36262425

RESUMO

The development of the vertebrate vascular system is an extremely important and complex process. The circulatory system is the first organ system to develop during embryogenesis. The development of the vasculature into highly branched canals must occur clearly in many places in order to supply oxygen and nutrients to the rapidly developing embryo. This process is mediated by a coordinated response of vascular endothelial and parietal cells to heterogeneous angiogenic signals provided by tissues and organs. MicroRNAs regulate gene expression at the transcriptional and post-transcriptional levels and participate in many important physiological and pathological processes. MicroRNAs mainly play an important role in the developmental regulation of vascular smooth muscle cells and vascular endothelial cells. This article summarizes the research progress of microRNAs in vascular development in recent years, focusing on the regulatory mechanism of miR-126 and miR-17/92 families in vascular endothelial cells, as well as the miR-143/145 family, miR-21 in vascular smooth muscle cell's regulation. The research prospects of the role of microRNAs in vascular development are also presented in this article.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...