Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Eng Phys ; 119: 104035, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37634912

RESUMO

Despite several theories have been proposed to explain the progression of Adolescent Idiopathic Scoliosis (AIS), there is no consensus on the mechanical factors that control the spinal deformities. Prominent biomechanical notions focus on the geometrical asymmetry and differential growth, however, the correlation between these phenomena remains unclear. We postulate that intradiscal pressure and its connection with the supporting ligamentous structures are the reasons behind the asymmetric growth in AIS. To investigate this hypothesis, a numerical 3D patient-specific model of a scoliotic spine is constructed to carry upper body weight. Four analyses are performed: control simulation with no ligaments followed by 3 simulations, in each, a different and stiffer set of ligaments is employed. The analyses showed that intradiscal pressure is relatively high in the spine's higher-deformity region. Moreover, the stiffness effect of the ligamentous tethering correlated directly to intradiscal pressure; the stiffer the ligaments, the higher the intradiscal pressure. Due to geometrical asymmetry, the pressure is eccentric toward the concave region of deformed vertebral units. As a result, the deformed annulus fibrosus generated uplifts in the convex side of deformed vertebral units. The eccentric pressure and the uplift are opposite in location and direction creating an imbalanced mechanical environment for the spine during growth.


Assuntos
Ligamentos , Coluna Vertebral , Adolescente , Humanos , Simulação por Computador
2.
Front Chem ; 11: 1218511, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483271

RESUMO

The mortality rate of bone cancer has witnessed a substantial reduction in recent years, all thanks to the advent of advanced cancer treatment modalities such as surgical intervention, radiation, and chemotherapy. Nevertheless, these popular modalities come with a set of clinical challenges, including non-specificity, side effects, and drug intolerance. In recent years, polymer-based nanosystems have emerged as a promising solution in bone anti-cancer therapy by virtue of their unique physical and chemical properties. These nanosystems can be tailored for use in different drug release mechanisms for therapeutic implementations. This review delves into the efficacy of these therapy applications in bone cancer (with a focus on one of the most common types of cancers, Osteosarcoma) treatment and their correlation with the properties of polymer-based nanosystems, in addition to their interaction with the tumor microenvironment and the biological milieu.

3.
Spine Deform ; 11(4): 825-831, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36763247

RESUMO

PURPOSE: Tether breakage was reported as the most common complication of vertebral body tethering. However, as the literature suggests the physiological loads do not have the potential to cause the failure of the tether. Currently, the biomechanical reason behind the tether breakage is unknown. The current study aims to elucidate the effects of the tension forces on the failure mechanisms of the VBT and provide mechanical justification for how it can be identified radiographically. METHODS: Tensile tests (20%/min strain rate) were performed on single-unit VBT samples. Failure modes and mechanical characteristics were reported. RESULTS: The failure took place prematurely due to the slippage of the tether at the screw-tether junction where the tether is damaged significantly by the locking cap. Slippage was initiated at 10-13% tensile strain level where the tensile stress and tension force were 50.4 ± 1.5 MPa and 582.2 ± 30.8 N, respectively. CONCLUSION: The failure occurs because of high-stress concentrations generated within the locking region which damages the tether surface and leads to the slippage of the tether. We observed that the loads leading to failure are within the physiological limits and may indicate the high likelihood of the tether breakage. The failure mode observed in our study is shown to be the dominant failure mode, and a design improvement on the gripping mechanism is suggested to avoid failure at the screw-tether junction. We observed that the tether elongates 10-13% prior to the breakage, which can be employed as a diagnostic criterion to screen for tether breakages radiographically.


Assuntos
Fenômenos Biomecânicos , Parafusos Ósseos , Corpo Vertebral , Humanos
4.
J Orthop Surg (Hong Kong) ; 29(3): 23094990211042237, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34592859

RESUMO

Purpose: To assess whether the magnitude of lengthening in magnetically controlled growing rod (MCGR) surgeries has an immediate or delayed effect on spinal off-loading. Methods: 9 whole porcine spines were instrumented using two standard MCGRs from T9 to L5. Static compression testing using a mechanical testing system (MTS) was performed at three MCGR lengthening stages (0 mm, 2 mm, and 6 mm) in each spine. At each stage, five cycles of compression at 175N with 25 min of relaxation was carried out. Off-loading was derived by comparing the load sustained by the spine with force applied by the MTS to the spine. Micro-CT imaging was subsequently performed. Results: The mean load sustained by the vertebral body before lengthening was 39.69N, and immediately after lengthening was 25.12N and 19.91N at 2 mm and 6 mm lengthening, respectively; decreasing to 10.07N, 8.31N, and 8.17N after 25 minutes of relaxation, at 0 mm, 2 mm, and 6 mm lengthening stages, respectively. There was no significant difference in off-loading between 2 mm and 6 mm lengthening stages, either instantaneously (p = 0.395) or after viscoelastic relaxation (p = 0.958). CT images showed fractures/separations at the level of pedicle screws in six spines and in the vertebral body's growth zone in five spines after 6 mm MCGR lengthening. Conclusion: This study demonstrated MCGRs cause significant off-loading of the spine leading to stress shielding. 6 mm of lengthening caused tissue damage and microfractures in some spines. There was no significant difference in spine off-loading between 2 mm and 6 mm MCGR lengthening, either immediately after lengthening or after viscoelastic relaxation.


Assuntos
Procedimentos Ortopédicos , Parafusos Pediculares , Escoliose , Animais , Escoliose/diagnóstico por imagem , Escoliose/cirurgia , Coluna Vertebral/cirurgia , Suínos
5.
PLoS One ; 15(5): e0233021, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32396571

RESUMO

The time-dependent properties of rubber-like synthesized and biological materials are crucial for their applications. Currently, this behavior is mainly measured using axial tensile test, compression test, or indentation. Limited studies performed on using multi-axial loading measurements of time-dependent material behavior exist in the literature. Therefore, the aim of this study is to investigate the viscoelastic response of rubber-like materials under multi-axial loading using cavity expansion and relaxation tests. The tests were performed on PVA hydrogel specimens. Three hyperelasitc models and one term Prony series were used to characterize the viscoelastic response of the hydrogels. Finite element (FE) simulations were performed to verify the validity of the calibrated material coefficients by reproducing the experimental results. The excellent agreement between the experimental, analytical and numerical data proves the capability of the cavity expansion technique to measure the time-dependent behavior of viscoelastic materials.


Assuntos
Álcool de Polivinil/química , Bioengenharia , Fenômenos Biomecânicos , Elasticidade , Elastômeros/química , Análise de Elementos Finitos , Hidrogéis/química , Teste de Materiais , Estresse Mecânico , Viscosidade
6.
Chemosphere ; 215: 353-361, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30326441

RESUMO

Targeted nanoparticle binding has become a core feature of experimental pharmaceutical product design which enables more efficient payload delivery and enhances medical imaging by accumulating nanoparticles in specific tissues. Environmental remediation and geophysical monitoring encounter similar challenges which may be addressed in part by the adoption of targeted nanoparticle binding strategies. This study illustrates that engineered nanoparticles can bind to crude oil-impacted silica sand, a selective adsorption driven by active targeting based on an amphiphilic polymer coating. This coating strategy resulted in 2 mg/kg attachment to clean silica sand compared to 8 mg/kg attachment to oil-impacted silica sand. It was also shown that modifying the surface coating influenced the binding behaviour of the engineered nanoparticles - more hydrophobic polymers resulted in increased binding. Successful targeting of Pluronic-coated iron oxide nanoparticles to a crude oil and silica sand mixture was demonstrated through a combined quantitative Orbital Emission Spectroscopy mass analysis supported by Vibrating Scanning Magnetometer magnetometry, and a qualitative X-ray micro-computed tomography (CT) visualization approach. These non-destructive characterization techniques facilitated efficient analysis of nanoparticles in porous medium samples with minimal sample preparation, and in the case of X-Ray CT, illustrated how targeted nanoparticle binding may be used to produce 3-D images of contaminated porous media. This work demonstrated successful implementation of nanoparticle targeted binding toward viscous LNAPL such as crude oil in the presence of a porous medium, a step which opens the door to successful application of targeted delivery technology in environmental remediation and monitoring.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Recuperação e Remediação Ambiental , Hidrocarbonetos/química , Nanopartículas/análise , Petróleo , Nanopartículas/química , Polímeros/química , Porosidade , Dióxido de Silício , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...