Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 47(42): 14945-14957, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30259028

RESUMO

Nonheme iron dioxygenases are efficient enzymes with relevance for human health that regio- and stereospecifically transfer an oxygen atom to substrates. How they perform this task with such selectivity remains unknown, but may have to do with substrate binding, positioning and oxidant approach. To understand substrate approach on a catalytic reaction centre, we investigated the structure and reactivity of a biomimetic oxidant with ligand features that affect the interactions between oxidant and substrate. Thus, we report here the synthesis and characterization of an iron(iv)-oxo complex with pentadentate nonheme ligand, where structurally induced perturbations in the equatorial ligand field affect the spectroscopy and reactivity of the complex. We tested the activity of the complex with respect to oxygen atom transfer to and hydrogen atom abstraction from substrates. This oxidant shows improved reaction rates toward heteroatom oxidation with respect to the nonsubstituted ligand complex by ∼104 fold. The origin of the enhanced reactivity is explained with a series of density functional theory studies that show an enhanced electron affinity of the oxidant through equatorial ligand perturbations.

2.
Angew Chem Int Ed Engl ; 55(37): 11091-5, 2016 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-27392043

RESUMO

Metal-peroxo intermediates are key species in the catalytic cycles of nonheme metalloenzymes, but their chemical properties and reactivity patterns are still poorly understood. The synthesis and characterization of a manganese(III)-peroxo complex with a pentadentate bispidine ligand system and its reactivity with aldehydes was studied. Manganese(III)-peroxo can react through hydrogen-atom abstraction reactions instead of the commonly proposed nucleophilic addition reaction. Evidence of the mechanism comes from experiments which identify a primary kinetic isotope effect of 5.4 for the deformylation reaction. Computational modeling supports the established mechanism and identifies the origin of the reactivity preference of hydrogen-atom abstraction over nucleophilic addition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...