Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cell ; 58(14): 1266-1281.e7, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37315562

RESUMO

Lipid droplets (LDs) store lipids that can be utilized during times of scarcity via autophagic and lysosomal pathways, but how LDs and autophagosomes interact remained unclear. Here, we discovered that the E2 autophagic enzyme, ATG3, localizes to the surface of certain ultra-large LDs in differentiated murine 3T3-L1 adipocytes or Huh7 human liver cells undergoing prolonged starvation. Subsequently, ATG3 lipidates microtubule-associated protein 1 light-chain 3B (LC3B) to these LDs. In vitro, ATG3 could bind alone to purified and artificial LDs to mediate this lipidation reaction. We observed that LC3B-lipidated LDs were consistently in close proximity to collections of LC3B-membranes and were lacking Plin1. This phenotype is distinct from macrolipophagy, but it required autophagy because it disappeared following ATG5 or Beclin1 knockout. Our data suggest that extended starvation triggers a noncanonical autophagy mechanism, similar to LC3B-associated phagocytosis, in which the surface of large LDs serves as an LC3B lipidation platform for autophagic processes.


Assuntos
Autofagia , Gotículas Lipídicas , Animais , Humanos , Camundongos , Autofagossomos/metabolismo , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Gotículas Lipídicas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo
2.
J Cell Biol ; 222(7)2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37115958

RESUMO

As the autophagosome forms, its membrane surface area expands rapidly, while its volume is kept low. Protein-mediated transfer of lipids from another organelle to the autophagosome likely drives this expansion, but as these lipids are only introduced into the cytoplasmic-facing leaflet of the organelle, full membrane growth also requires lipid scramblase activity. ATG9 harbors scramblase activity and is essential to autophagosome formation; however, whether ATG9 is integrated into mammalian autophagosomes remains unclear. Here we show that in the absence of lipid transport, ATG9 vesicles are already competent to collect proteins found on mature autophagosomes, including LC3-II. Further, we use styrene-maleic acid lipid particles to reveal the nanoscale organization of protein on LC3-II membranes; ATG9 and LC3-II are each fully integrated into expanding autophagosomes. The ratios of these two proteins at different stages of maturation demonstrate that ATG9 proteins are not continuously integrated, but rather are present on the seed vesicles only and become diluted in the expanding autophagosome membrane.


Assuntos
Autofagossomos , Proteínas de Membrana , Animais , Autofagossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Autofagia , Transporte Proteico , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Lipídeos , Mamíferos/metabolismo
3.
J Biol Chem ; 295(39): 13584-13600, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32732290

RESUMO

During autophagy, LC3 and GABARAP proteins become covalently attached to phosphatidylethanolamine on the growing autophagosome. This attachment is also reversible. Deconjugation (or delipidation) involves the proteolytic cleavage of an isopeptide bond between LC3 or GABARAP and the phosphatidylethanolamine headgroup. This cleavage is carried about by the ATG4 family of proteases (ATG4A, B, C, and D). Many studies have established that ATG4B is the most active of these proteases and is sufficient for autophagy progression in simple cells. Here we examined the second most active protease, ATG4A, to map out key regulatory motifs on the protein and to establish its activity in cells. We utilized fully in vitro reconstitution systems in which we controlled the attachment of LC3/GABARAP members and discovered a role for a C-terminal LC3-interacting region on ATG4A in regulating its access to LC3/GABARAP. We then used a gene-edited cell line in which all four ATG4 proteases have been knocked out to establish that ATG4A is insufficient to support autophagy and is unable to support GABARAP proteins removal from the membrane. As a result, GABARAP proteins accumulate on membranes other than mature autophagosomes. These results suggest that to support efficient production and consumption of autophagosomes, additional factors are essential including possibly ATG4B itself or one of its proteolytic products in the LC3 family.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo , Macroautofagia , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Relacionadas à Autofagia/genética , Cisteína Endopeptidases/genética , Células HEK293 , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo
4.
Nat Cell Biol ; 21(3): 372-383, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30778222

RESUMO

Covalent modification of LC3 and GABARAP proteins to phosphatidylethanolamine in the double-membrane phagophore is a key event in the early phase of macroautophagy, but can also occur on single-membrane structures. In both cases this involves transfer of LC3/GABARAP from ATG3 to phosphatidylethanolamine at the target membrane. Here we have purified the full-length human ATG12-5-ATG16L1 complex and show its essential role in LC3B/GABARAP lipidation in vitro. We have identified two functionally distinct membrane-binding regions in ATG16L1. An N-terminal membrane-binding amphipathic helix is required for LC3B lipidation under all conditions tested. By contrast, the C-terminal membrane-binding region is dispensable for canonical autophagy but essential for VPS34-independent LC3B lipidation at perturbed endosomes. We further show that the ATG16L1 C-terminus can compensate for WIPI2 depletion to sustain lipidation during starvation. This C-terminal membrane-binding region is present only in the ß-isoform of ATG16L1, showing that ATG16L1 isoforms mechanistically distinguish between different LC3B lipidation mechanisms under different cellular conditions.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Membrana Celular/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Relacionadas à Autofagia/genética , Sítios de Ligação/genética , Endossomos/metabolismo , Células HEK293 , Humanos , Lipídeos de Membrana/metabolismo , Camundongos , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células RAW 264.7 , Homologia de Sequência de Aminoácidos
5.
Autophagy ; 14(6): 992-1010, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29458288

RESUMO

During macroautophagy/autophagy, mammalian Atg8-family proteins undergo 2 proteolytic processing events. The first exposes a COOH-terminal glycine used in the conjugation of these proteins to lipids on the phagophore, the precursor to the autophagosome, whereas the second releases the lipid. The ATG4 family of proteases drives both cleavages, but how ATG4 proteins distinguish between soluble and lipid-anchored Atg8 proteins is not well understood. In a fully reconstituted delipidation assay, we establish that the physical anchoring of mammalian Atg8-family proteins in the membrane dramatically shifts the way ATG4 proteases recognize these substrates. Thus, while ATG4B is orders of magnitude faster at processing a soluble unprimed protein, all 4 ATG4 proteases can be activated to similar enzymatic activities on lipid-attached substrates. The recognition of lipidated but not soluble substrates is sensitive to a COOH-terminal LIR motif both in vitro and in cells. We suggest a model whereby ATG4B drives very fast priming of mammalian Atg8 proteins, whereas delipidation is inherently slow and regulated by all ATG4 homologs.


Assuntos
Família da Proteína 8 Relacionada à Autofagia/metabolismo , Cisteína Endopeptidases/metabolismo , Lipídeos/química , Mamíferos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Membrana Celular/metabolismo , Humanos , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Solubilidade , Eletricidade Estática , Especificidade por Substrato
6.
Nat Cell Biol ; 16(5): 415-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24747438

RESUMO

The components supporting autophagosome growth on the cup-like isolation membrane are likely to be different from those found on closed and maturing autophagosomes. The highly curved rim of the cup may serve as a functionally required surface for transiently associated components of the early acting autophagic machinery. Here we demonstrate that the E2-like enzyme, Atg3, facilitates LC3/GABARAP lipidation only on membranes exhibiting local lipid-packing defects. This activity requires an amino-terminal amphipathic helix similar to motifs found on proteins targeting highly curved intracellular membranes. By tuning the hydrophobicity of this motif, we can promote or inhibit lipidation in vitro and in rescue experiments in Atg3-knockout cells, implying a physiologic role for this stress detection. The need for extensive lipid-packing defects suggests that Atg3 is designed to work at highly curved membranes, perhaps including the limiting edge of the growing phagophore.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Membrana Celular/enzimologia , Proteínas do Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose , Proteína 7 Relacionada à Autofagia , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Proteínas do Citoesqueleto/genética , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação , Fosfatidiletanolaminas/metabolismo , Ratos , Estresse Fisiológico , Transfecção , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/deficiência , Enzimas de Conjugação de Ubiquitina/genética
7.
Cell ; 146(2): 290-302, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21784249

RESUMO

Macroautophagy mediates the degradation of long-lived proteins and organelles via the de novo formation of double-membrane autophagosomes that sequester cytoplasm and deliver it to the vacuole/lysosome; however, relatively little is known about autophagosome biogenesis. Atg8, a phosphatidylethanolamine-conjugated protein, was previously proposed to function in autophagosome membrane expansion, based on the observation that it mediates liposome tethering and hemifusion in vitro. We show here that with physiological concentrations of phosphatidylethanolamine, Atg8 does not act as a fusogen. Rather, we provide evidence for the involvement of exocytic Q/t-SNAREs in autophagosome formation, acting in the recruitment of key autophagy components to the site of autophagosome formation, and in regulating the organization of Atg9 into tubulovesicular clusters. Additionally, we found that the endosomal Q/t-SNARE Tlg2 and the R/v-SNAREs Sec22 and Ykt6 interact with Sso1-Sec9, and are required for normal Atg9 transport. Thus, multiple SNARE-mediated fusion events are likely to be involved in autophagosome biogenesis.


Assuntos
Autofagia , Fagossomos/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Família da Proteína 8 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidiletanolaminas/metabolismo , Proteínas Qa-SNARE/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
J Immunol ; 177(6): 3930-8, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16951356

RESUMO

In an effective immune response, CD8+ T cell recognition of virally derived Ag, bound to MHC class I, results in killing of infected cells. The CD8alphabeta heterodimer acts as a coreceptor with the TCR, to enhance sensitivity of the T cells to peptide/MHC class I, and is two orders of magnitude more efficient as a coreceptor than the CD8alphaalpha. To understand the important interaction between CD8alphabeta and MHC class I, we created a panel of CD8beta mutants and identified mutations in the CDR1, CDR2, and CDR3 loops that decreased binding to MHC class I tetramers as well as mutations that enhanced binding. We tested the coreceptor function of a subset of reducing and enhancing mutants using a T cell hybridoma and found similar reducing and enhancing effects. CD8beta-enhancing mutants could be useful for immunotherapy by transduction into T cells to enhance T cell responses against weak Ags such as those expressed by tumors. We also addressed the question of the orientation of CD8alphabeta with MHC class I using CD8alpha mutants expressed as a heterodimer with wild-type CD8alpha or CD8beta. The partial rescuing of binding with wild-type CD8beta compared with wild-type CD8alpha is consistent with models in which either the topology of CD8alphaalpha and CD8alphabeta binding to MHC class I is different or CD8alphabeta is capable of binding in both the T cell membrane proximal and distal positions.


Assuntos
Antígenos CD8/química , Antígenos CD8/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Mutagênese , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Antígenos CD8/genética , Células COS , Chlorocebus aethiops , Humanos , Camundongos , Dados de Sequência Molecular
9.
J Immunol ; 168(8): 3915-22, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11937547

RESUMO

To locate elements regulating the human CD8 gene complex, we mapped nuclear matrix attachment regions (MARs) and DNase I hypersensitive (HS) sites over a 100-kb region that included the CD8B gene, the intergenic region, and the CD8A gene. MARs facilitate long-range chromatin remodeling required for enhancer activity and have been found closely linked to several lymphoid enhancers. Within the human CD8 gene complex, we identified six DNase HS clusters, four strong MARs, and several weaker MARs. Three of the strong MARs were closely linked to two tissue-specific DNase HS clusters (III and IV) at the 3' end of the CD8B gene. To further establish the importance of this region, we obtained 19 kb of sequence and screened for potential binding sites for the MAR-binding protein, SATB1, and for GATA-3, both of which are critical for T cell development. By gel shift analysis we identified two strong SATB1 binding sites, located 4.5 kb apart, in strong MARs. We also detected strong GATA-3 binding to an oligonucleotide containing two GATA-3 motifs located at an HS site in cluster IV. This clustering of DNase HS sites and MARs capable of binding SATB1 and GATA-3 at the 3' end of the CD8B gene suggests that this region is an epigenetic regulator of CD8 expression.


Assuntos
Antígenos CD8/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonuclease I/genética , Proteínas de Ligação à Região de Interação com a Matriz , Matriz Nuclear/genética , Sequências Reguladoras de Ácido Nucleico/imunologia , Transativadores/metabolismo , Sequência de Bases , Sítios de Ligação/genética , Sítios de Ligação/imunologia , Antígenos CD8/metabolismo , Linhagem Celular Transformada , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Desoxirribonuclease I/metabolismo , Fator de Transcrição GATA3 , Humanos , Células Jurkat , Dados de Sequência Molecular , Matriz Nuclear/metabolismo , Ligação Proteica/genética , Ligação Proteica/imunologia , Análise de Sequência de DNA , Transativadores/genética , Transcrição Gênica/imunologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...