Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 14865, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684321

RESUMO

In-vivo toxicity assessment is an important step prior to clinical development and is still the main source of data for overall risk assessment of a new molecular entity (NCE). All in-vivo studies are performed according to regulatory requirements and many efforts have been exerted to minimize these studies in accordance with the (Replacement, Reduction and Refinement) 3Rs principle. Many aspects of in-vivo toxicology packages can be optimized to reduce animal use, including the number of studies performed as well as study durations, which is the main focus of this analysis. We performed a statistical comparison of adverse findings observed in 116 short-term versus 78 long-term in-house or in-house sponsored Contract Research Organizations (CRO) studies, in order to explore the possibility of using only short-term studies as a prediction tool for the longer-term effects. All the data analyzed in this study was manually extracted from the toxicology reports (in PDF formats) to construct the dataset. Annotation of treatment related findings was one of the challenges faced during this work. A specific focus was therefore put on the summary and conclusion sections of the reports since they contain expert assessments on whether the findings were considered adverse or were attributed to other reasons. Our analysis showed a general good concordance between short-term and long-term toxicity findings for large molecules and the majority of small molecules. Less concordance was seen for certain body organs, which can be named as "target organ systems' findings". While this work supports the minimization of long-term studies, a larger-scale effort would be needed to provide more evidence. We therefore present the steps performed in this study as an open-source R workflow for the Comparison of Short-term and Long-term Toxicity studies (CSL-Tox). The dataset used in the work is provided to allow researchers to reproduce such analysis, re-evaluate the statistical tools used and promote large-scale application of this study. Important aspects of animal research reproducibility are highlighted in this work, specifically, the necessity of a reproducible adverse effects reporting system and utilization of the controlled terminologies in-vivo toxicology reports and finally the importance of open-source analytical workflows that can be assessed by other scientists in the field of preclinical toxicology.


Assuntos
Experimentação Animal , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Animais , Reprodutibilidade dos Testes , Desenvolvimento de Medicamentos
2.
J Cheminform ; 14(1): 27, 2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35525988

RESUMO

Unpredicted drug safety issues constitute the majority of failures in the pharmaceutical industry according to several studies. Some of these preclinical safety issues could be attributed to the non-selective binding of compounds to targets other than their intended therapeutic target, causing undesired adverse events. Consequently, pharmaceutical companies routinely run in-vitro safety screens to detect off-target activities prior to preclinical and clinical studies. Hereby we present an open source machine learning framework aiming at the prediction of our in-house 50 off-target panel activities for ~ 4000 compounds, directly from their structure. This framework is intended to guide chemists in the drug design process prior to synthesis and to accelerate drug discovery. We also present a set of ML approaches that require minimum programming experience for deployment. The workflow incorporates different ML approaches such as deep learning and automated machine learning. It also accommodates popular issues faced in bioactivity predictions, as data imbalance, inter-target duplicated measurements and duplicated public compound identifiers. Throughout the workflow development, we explore and compare the capability of Neural Networks and AutoML in constructing prediction models for fifty off-targets of different protein classes, different dataset sizes, and high-class imbalance. Outcomes from different methods are compared in terms of efficiency and efficacy. The most important challenges and factors impacting model construction and performance in addition to suggestions on how to overcome such challenges are also discussed.

3.
Mol Pharm ; 19(7): 2203-2216, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35476457

RESUMO

Minimizing in vitro and in vivo testing in early drug discovery with the use of physiologically based pharmacokinetic (PBPK) modeling and machine learning (ML) approaches has the potential to reduce discovery cycle times and animal experimentation. However, the prediction success of such an approach has not been shown for a larger and diverse set of compounds representative of a lead optimization pipeline. In this study, the prediction success of the oral (PO) and intravenous (IV) pharmacokinetics (PK) parameters in rats was assessed using a "bottom-up" approach, combining in vitro and ML inputs with a PBPK model. More than 240 compounds for which all of the necessary inputs and PK data were available were used for this assessment. Different clearance scaling approaches were assessed, using hepatocyte intrinsic clearance and protein binding as inputs. In addition, a novel high-throughput PBPK (HT-PBPK) approach was evaluated to assess the scalability of PBPK predictions for a larger number of compounds in drug discovery. The results showed that bottom-up PBPK modeling was able to predict the rat IV and PO PK parameters for the majority of compounds within a 2- to 3-fold error range, using both direct scaling and dilution methods for clearance predictions. The use of only ML-predicted inputs from the structure did not perform well when using in vitro inputs, likely due to clearance miss predictions. The HT-PBPK approach produced comparable results to the full PBPK modeling approach but reduced the simulation time from hours to seconds. In conclusion, a bottom-up PBPK and HT-PBPK approach can successfully predict the PK parameters and guide early discovery by informing compound prioritization, provided that good in vitro assays are in place for key parameters such as clearance.


Assuntos
Descoberta de Drogas , Modelos Biológicos , Animais , Simulação por Computador , Descoberta de Drogas/métodos , Hepatócitos , Taxa de Depuração Metabólica/fisiologia , Farmacocinética , Ratos
4.
Methods Mol Biol ; 2425: 637-674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188649

RESUMO

The present contribution describes how in silico models and methods are applied at different stages of the drug discovery process in the pharmaceutical industry. A description of the most relevant computational methods and tools is given along with an evaluation of their performance in the assessment of potential genotoxic impurities and the prediction of off-target in vitro pharmacology. The challenges of predicting the outcome of highly complex in vivo studies are discussed followed by considerations on how novel ways to manage, store, exchange, and analyze data may advance knowledge and facilitate modeling efforts. In this context, the current status of broad data sharing initiatives, namely, eTOX and eTransafe, will be described along with related projects that could significantly reduce the use of animals in drug discovery in the future.


Assuntos
Descoberta de Drogas , Preparações Farmacêuticas , Animais , Simulação por Computador , Descoberta de Drogas/métodos , Indústria Farmacêutica , Disseminação de Informação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...