Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 128: 109625, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521130

RESUMO

Maternal obesity might induce obesity and metabolic alterations in the progeny. The study aimed to determine the effect of supplementing obese mothers with Mel (Mel) on thermogenesis and inflammation. C57BL/6 female mice (mothers) were fed from weaning to 12 weeks control diet (C, 17% kJ as fat) or a high-fat diet (HF, 49% kJ as fat) and then matted with male mice fed the control diet. Melatonin (10 mg/kg daily) was supplemented to mothers during gestation and lactation, forming the groups C, CMel, HF, and HFMel (n = 10/group). Twelve-week male offspring were studied (plasma biochemistry, immunohistochemistry, protein, and gene expressions at the hypothalamus - Hyp, subcutaneous white adipose tissue - sWAT, and interscapular brown adipose tissue - iBAT). Comparing HFMel vs. HF offspring, fat deposits and plasmatic proinflammatory markers decreased. Also, HFMel showed decreased Hyp proinflammatory markers and neuropeptide Y (anabolic) expression but improved proopiomelanocortin (catabolic) expression. Besides, HFMel sWAT adipocytes changed to a beige phenotype with-beta-3 adrenergic receptor and uncoupling protein-1 activation, concomitant with browning genes activation, triggering the iBAT thermogenic activity. In conclusion, compelling evidence indicated the beneficial effects of supplementing obese mothers with Mel on the health of their mature male offspring. Mel led to sWAT browning-related gene enhancement, increased iBAT thermogenis, and mitigated hypothalamic inflammation. Also, principal component analysis of the data significantly separated the untreated obese mother progeny from the progeny of treated obese mothers. If confirmed in humans, the findings encourage a future guideline recommending Mel supplementation during pregnancy and breastfeeding.


Assuntos
Dieta Hiperlipídica , Suplementos Nutricionais , Hipotálamo , Inflamação , Melatonina , Camundongos Endogâmicos C57BL , Obesidade Materna , Termogênese , Animais , Termogênese/efeitos dos fármacos , Feminino , Melatonina/farmacologia , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Masculino , Gravidez , Obesidade Materna/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Obesidade/metabolismo , Obesidade/tratamento farmacológico , Fenômenos Fisiológicos da Nutrição Materna , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética
2.
J Dev Orig Health Dis ; 14(4): 490-500, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37366144

RESUMO

Melatonin supplementation to obese mothers during gestation and lactation might benefit the pancreatic islet cellular composition and beta-cell function in male offspring adulthood. C57BL/6 females (mothers) were assigned to two groups (n = 20/each) based on their consumption in control (C 17% kJ as fat) or high-fat diet (HF 49% kJ as fat). Mothers were supplemented with melatonin (Mel) (10 mg/kg daily) during gestation and lactation, or vehicle, forming the groups (n = 10/each): C, CMel, HF, and HFMel. The male offspring were studied, considering they only received the C diet after weaning until three months old. The HF mothers and their offspring showed higher body weight, glucose intolerance, insulin resistance, and low insulin sensitivity than the C ones. However, HFMel mothers and their offspring showed improved glucose metabolism and weight loss than the HF ones. Also, the offspring's higher expressions of pro-inflammatory markers and endoplasmic reticulum (ER) stress were observed in HF but reduced in HFMel. Contrarily, antioxidant enzymes were less expressed in HF but improved in HFMel. In addition, HF showed increased beta-cell mass and hyperinsulinemia but diminished in HFMel. Besides, the beta-cell maturity and identity gene expressions diminished in HF but enhanced in HFMel. In conclusion, obese mothers supplemented with melatonin benefit their offspring's islet cell remodeling and function. In addition, improving pro-inflammatory markers, oxidative stress, and ER stress resulted in better glucose and insulin levels control. Consequently, pancreatic islets and functioning beta cells were preserved in the offspring of obese mothers supplemented with melatonin.


Assuntos
Resistência à Insulina , Ilhotas Pancreáticas , Melatonina , Efeitos Tardios da Exposição Pré-Natal , Feminino , Masculino , Gravidez , Humanos , Melatonina/farmacologia , Melatonina/metabolismo , Obesidade/metabolismo , Ilhotas Pancreáticas/metabolismo , Lactação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo
3.
Life Sci ; 312: 121253, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481166

RESUMO

AIMS: To investigate, in the liver of adult offspring, the possible effects of melatonin supplementation in the obese mother during pregnancy and lactation. MAIN METHODS: C57BL/6 females were fed with a control (C) or a high-fat (HF) diet and supplemented with melatonin (Mel) during the pregnancy and lactation, forming the groups: C, CMel, HF, and HFMel. After weaning until three months old, the offspring only received the C diet. KEY FINDINGS: The HF mothers and their offspring showed higher body weight (BW) than the C mothers and offspring. However, at 3-mo-old, BW was reduced in HFMel vs. HF offspring. Also, plasmatic and liver lipid markers increased in HF vs. C offspring but were reduced in HFMel vs. HF offspring. Liver lipid content was lessened in HFMel vs. HF offspring by 50 %. Also, lipid metabolism, pro-inflammatory and endoplasmic reticulum (ER) stress genes were higher expressed in HF vs. C offspring but reduced in HFMel vs. HF offspring. Contrarily, beta-oxidation and antioxidant enzyme genes were less expressed in HF vs. C offspring but improved in HFMel vs. HF offspring. Finally, AMPK/mTOR pathway genes, initially dysregulated in the HF, were restored in the HFMel offspring. SIGNIFICANCE: The obese mother leads to liver alterations in the offspring. Current findings demonstrated the maternal melatonin supplementation during pregnancy and lactation in adult offspring's liver. Consequently, the effects were seen in mitigating the liver's AMPK/mTOR pathway genes, lipogenesis, beta-oxidation, inflammation, oxidative stress, and ER stress, preventing liver disease progression in the offspring.


Assuntos
Fígado Gorduroso , Melatonina , Obesidade , Efeitos Tardios da Exposição Pré-Natal , Animais , Feminino , Camundongos , Gravidez , Proteínas Quinases Ativadas por AMP , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Estresse do Retículo Endoplasmático , Inflamação , Lipídeos , Fenômenos Fisiológicos da Nutrição Materna , Melatonina/farmacologia , Camundongos Endogâmicos C57BL , Mães , Estresse Oxidativo , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA