Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
1.
Transl Psychiatry ; 14(1): 216, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806495

RESUMO

Genetic factors significantly affect the pathogenesis of psychiatric disorders. However, the specific pathogenic mechanisms underlying these effects are not fully understood. Recent extensive genomic studies have implicated the protocadherin-related 15 (PCDH15) gene in the onset of psychiatric disorders, such as bipolar disorder (BD). To further investigate the pathogenesis of these psychiatric disorders, we developed a mouse model lacking Pcdh15. Notably, although PCDH15 is primarily identified as the causative gene of Usher syndrome, which presents with visual and auditory impairments, our mice with Pcdh15 homozygous deletion (Pcdh15-null) did not exhibit observable structural abnormalities in either the retina or the inner ear. The Pcdh15-null mice showed very high levels of spontaneous motor activity which was too disturbed to perform standard behavioral testing. However, the Pcdh15 heterozygous deletion mice (Pcdh15-het) exhibited enhanced spontaneous locomotor activity, reduced prepulse inhibition, and diminished cliff avoidance behavior. These observations agreed with the symptoms observed in patients with various psychiatric disorders and several mouse models of psychiatric diseases. Specifically, the hyperactivity may mirror the manic episodes in BD. To obtain a more physiological, long-term quantification of the hyperactive phenotype, we implanted nano tag® sensor chips in the animals, to enable the continuous monitoring of both activity and body temperature. During the light-off period, Pcdh15-null exhibited elevated activity and body temperature compared with wild-type (WT) mice. However, we observed a decreased body temperature during the light-on period. Comprehensive brain activity was visualized using c-Fos mapping, which was assessed during the activity and temperature peak and trough. There was a stark contrast between the distribution of c-Fos expression in Pcdh15-null and WT brains during both the light-on and light-off periods. These results provide valuable insights into the neural basis of the behavioral and thermal characteristics of Pcdh15-deletion mice. Therefore, Pcdh15-deletion mice can be a novel model for BD with mania and other psychiatric disorders, with a strong genetic component that satisfies both construct and surface validity.


Assuntos
Transtorno Bipolar , Temperatura Corporal , Caderinas , Modelos Animais de Doenças , Locomoção , Camundongos Knockout , Animais , Masculino , Camundongos , Comportamento Animal , Transtorno Bipolar/genética , Transtorno Bipolar/fisiopatologia , Caderinas/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Locomoção/genética , Camundongos Endogâmicos C57BL , Inibição Pré-Pulso/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Protocaderinas
2.
Front Mol Neurosci ; 17: 1379089, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628370

RESUMO

Protein phosphorylation, a key regulator of cellular processes, plays a central role in brain function and is implicated in neurological disorders. Information on protein phosphorylation is expected to be a clue for understanding various neuropsychiatric disorders and developing therapeutic strategies. Nonetheless, existing databases lack a specific focus on phosphorylation events in the brain, which are crucial for investigating the downstream pathway regulated by neurotransmitters. To overcome the gap, we have developed a web-based database named "Kinase-Associated Neural PHOspho-Signaling (KANPHOS)." This paper presents the design concept, detailed features, and a series of improvements for KANPHOS. KANPHOS is designed to support data-driven research by fulfilling three key objectives: (1) enabling the search for protein kinases and their substrates related to extracellular signals or diseases; (2) facilitating a consolidated search for information encompassing phosphorylated substrate genes, proteins, mutant mice, diseases, and more; and (3) offering integrated functionalities to support pathway and network analysis. KANPHOS is also equipped with API functionality to interact with external databases and analysis tools, enhancing its utility in data-driven investigations. Those key features represent a critical step toward unraveling the complex landscape of protein phosphorylation in the brain, with implications for elucidating the molecular mechanisms underlying neurological disorders. KANPHOS is freely accessible to all researchers at https://kanphos.jp.

3.
Transl Psychiatry ; 14(1): 138, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453903

RESUMO

Whole genome analysis has identified rare copy number variations (CNV) that are strongly involved in the pathogenesis of psychiatric disorders, and 3q29 deletion has been found to have the largest effect size. The 3q29 deletion mice model (3q29-del mice) has been established as a good pathological model for schizophrenia based on phenotypic analysis; however, circadian rhythm and sleep, which are also closely related to neuropsychiatric disorders, have not been investigated. In this study, our aims were to reevaluate the pathogenesis of 3q29-del by recreating model mice and analyzing their behavior and to identify novel new insights into the temporal activity and temperature fluctuations of the mouse model using a recently developed small implantable accelerometer chip, Nano-tag. We generated 3q29-del mice using genome editing technology and reevaluated common behavioral phenotypes. We next implanted Nano-tag in the abdominal cavity of mice for continuous measurements of long-time activity and body temperature. Our model mice exhibited weight loss similar to that of other mice reported previously. A general behavioral battery test in the model mice revealed phenotypes similar to those observed in mouse models of schizophrenia, including increased rearing frequency. Intraperitoneal implantation of Nano-tag, a miniature acceleration sensor, resulted in hypersensitive and rapid increases in the activity and body temperature of 3q29-del mice upon switching to lights-off condition. Similar to the 3q29-del mice reported previously, these mice are a promising model animals for schizophrenia. Successive quantitative analysis may provide results that could help in treating sleep disorders closely associated with neuropsychiatric disorders.


Assuntos
Deficiências do Desenvolvimento , Deficiência Intelectual , Humanos , Criança , Camundongos , Animais , Deficiências do Desenvolvimento/genética , Deleção Cromossômica , Variações do Número de Cópias de DNA , Temperatura Corporal , Deficiência Intelectual/genética , Modelos Animais de Doenças , Fenótipo
4.
Front Mol Neurosci ; 17: 1376762, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516040

RESUMO

The unraveling of the regulatory mechanisms that govern neuronal excitability is a major challenge for neuroscientists worldwide. Neurotransmitters play a critical role in maintaining the balance between excitatory and inhibitory activity in the brain. The balance controls cognitive functions and emotional responses. Glutamate and γ-aminobutyric acid (GABA) are the primary excitatory and inhibitory neurotransmitters of the brain, respectively. Disruptions in the balance between excitatory and inhibitory transmission are implicated in several psychiatric disorders, including anxiety disorders, depression, and schizophrenia. Neuromodulators such as dopamine and acetylcholine control cognition and emotion by regulating the excitatory/inhibitory balance initiated by glutamate and GABA. Dopamine is closely associated with reward-related behaviors, while acetylcholine plays a role in aversive and attentional behaviors. Although the physiological roles of neuromodulators have been extensively studied neuroanatomically and electrophysiologically, few researchers have explored the interplay between neuronal excitability and cell signaling and the resulting impact on emotion regulation. This review provides an in-depth understanding of "cell signaling crosstalk" in the context of neuronal excitability and emotion regulation. It also anticipates that the next generation of neurochemical analyses, facilitated by integrated phosphorylation studies, will shed more light on this topic.

5.
Pharmacol Res ; 194: 106838, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37390993

RESUMO

Schizophrenia (SCZ) is a severe psychiatric disorder characterized by positive symptoms, negative symptoms, and cognitive deficits. Current antipsychotic treatment in SCZ improves positive symptoms but has major side effects and little impact on negative symptoms and cognitive impairment. The pathoetiology of SCZ remains unclear, but is known to involve small GTPase signaling. Rho kinase, an effector of small GTPase Rho, is highly expressed in the brain and plays a major role in neurite elongation and neuronal architecture. This study used a touchscreen-based visual discrimination (VD) task to investigate the effects of Rho kinase inhibitors on cognitive impairment in a methamphetamine (METH)-treated male mouse model of SCZ. Systemic injection of the Rho kinase inhibitor fasudil dose-dependently ameliorated METH-induced VD impairment. Fasudil also significantly suppressed the increase in the number of c-Fos-positive cells in the infralimbic medial prefrontal cortex (infralimbic mPFC) and dorsomedial striatum (DMS) following METH treatment. Bilateral microinjections of Y-27632, another Rho kinase inhibitor, into the infralimbic mPFC or DMS significantly ameliorated METH-induced VD impairment. Two proteins downstream of Rho kinase, myosin phosphatase-targeting subunit 1 (MYPT1; Thr696) and myosin light chain kinase 2 (MLC2; Thr18/Ser19), exhibited increased phosphorylation in the infralimbic mPFC and DMS, respectively, after METH treatment, and fasudil inhibited these increases. Oral administration of haloperidol and fasudil ameliorated METH-induced VD impairment, while clozapine had little effect. Oral administration of haloperidol and clozapine suppressed METH-induced hyperactivity, but fasudil had no effect. These results suggest that METH activates Rho kinase in the infralimbic mPFC and DMS, which leads to cognitive impairment in male mice. Rho kinase inhibitors ameliorate METH-induced cognitive impairment, perhaps via the cortico-striatal circuit.


Assuntos
Disfunção Cognitiva , Metanfetamina , Proteínas Monoméricas de Ligação ao GTP , Inibidores de Proteínas Quinases , Esquizofrenia , Animais , Masculino , Camundongos , Clozapina , Disfunção Cognitiva/tratamento farmacológico , Haloperidol/farmacologia , Haloperidol/uso terapêutico , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
6.
Br J Pharmacol ; 180(18): 2393-2411, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37076133

RESUMO

BACKGROUND AND PURPOSE: High salt (HS) intake has been associated with hypertension and cognitive impairment. It is well known that the angiotensin II (Ang II)-AT1 receptor and prostaglandin E2 (PGE2)-EP1 receptor systems are involved in hypertension and neurotoxicity. However, the involvement of these systems in HS-mediated hypertension and emotional and cognitive impairments remains unclear. EXPERIMENTAL APPROACH: Mice were loaded with HS solution (2% NaCl drinking water) for 12 weeks, and blood pressure was monitored. Subsequently, effects of HS intake on emotional and cognitive function and tau phosphorylation in the prefrontal cortex (PFC) and hippocampus (HIP) were investigated. The involvement of Ang II-AT1 and PGE2-EP1 systems in HS-induced hypertension and neuronal and behavioural impairments was examined by treatment with losartan, an AT1 receptor blocker (ARB), or EP1 gene knockout. KEY RESULTS: We demonstrate that hypertension and impaired social behaviour and object recognition memory following HS intake may be associated with tau hyperphosphorylation, decreased phosphorylation of Ca2+ /calmodulin-dependent protein kinase II (CaMKII), and postsynaptic density protein 95 (PSD95) expression in the PFC and HIP of mice. These changes were blocked by pharmacological treatment with losartan or EP1 receptor gene knockout. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that the interaction of Ang II-AT1 receptor and PGE2-EP1 receptor systems could be novel therapeutic targets for hypertension-induced cognitive impairment.


Assuntos
Disfunção Cognitiva , Hipertensão , Camundongos , Animais , Losartan/farmacologia , Cloreto de Sódio , Dinoprostona/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Hipertensão/metabolismo , Cloreto de Sódio na Dieta , Receptor Tipo 1 de Angiotensina/metabolismo
7.
Pharmacol Res ; 187: 106589, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462727

RESUMO

Copy-number variations in the ARHGAP10 gene encoding Rho GTPase-activating protein 10 are associated with schizophrenia. Model mice (Arhgap10 S490P/NHEJ mice) that carry "double-hit" mutations in the Arhgap10 gene mimic the schizophrenia in a Japanese patient, exhibiting altered spine density, methamphetamine-induced cognitive dysfunction, and activation of RhoA/Rho-kinase signaling. However, it remains unclear whether the activation of RhoA/Rho-kinase signaling due to schizophrenia-associated Arhgap10 mutations causes the phenotypes of these model mice. Here, we investigated the effects of fasudil, a brain permeable Rho-kinase inhibitor, on altered spine density in the medial prefrontal cortex (mPFC) and on methamphetamine-induced cognitive impairment in a touchscreen­based visual discrimination task in Arhgap10 S490P/NHEJ mice. Fasudil (20 mg/kg, intraperitoneal) suppressed the increased phosphorylation of myosin phosphatase-targeting subunit 1, a substrate of Rho-kinase, in the striatum and mPFC of Arhgap10 S490P/NHEJ mice. In addition, daily oral administration of fasudil (20 mg/kg/day) for 7 days ameliorated the reduced spine density of layer 2/3 pyramidal neurons in the mPFC. Moreover, fasudil (3-20 mg/kg, intraperitoneal) rescued the methamphetamine (0.3 mg/kg)-induced cognitive impairment of visual discrimination in Arhgap10 S490P/NHEJ mice. Our results suggest that Rho-kinase plays significant roles in the neuropathological changes in spine morphology and in the vulnerability of cognition to methamphetamine in mice with schizophrenia-associated Arhgap10 mutations.


Assuntos
Disfunção Cognitiva , Esquizofrenia , Animais , Camundongos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/genética , Mutação , Córtex Pré-Frontal/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/metabolismo , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
8.
Biochem Biophys Res Commun ; 639: 100-105, 2023 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-36476949

RESUMO

Although opioids are useful narcotic analgesics in clinical settings, their misuse and addiction in the United States of America and other countries are rapidly increasing. Therefore, the development of abuse-deterrent formulations is an urgent issue. We herein investigated how to select the ratio of an opioid and the opioid receptor antagonist, naloxone in abuse-deterrent formulations for mice. The conditioned place preference (CPP) test was used to evaluate the rewarding effects of abused drugs. The opioids morphine (30 µmol/kg), oxycodone (3 µmol/kg), fentanyl (0.4 µmol/kg), and buprenorphine (0.5 µmol/kg) significantly induced place preference in mice. We also examined the optimal ratio of naloxone and opioids to inhibit the rewarding effects of the latter. Naloxone (3-5 µmol/kg) effectively inhibited place preference induced by the opioids tested. We calculated theoretical drug doses that exerted the same pharmacodynamic effects based on two parameters: µ-opioid receptor binding affinity and blood-brain barrier (BBB) permeability. Theoretical doses were very close to the drug doses at which mice showed place preference. Therefore, the CPP test is useful as a behavioral method for evaluating abuse-deterrent formulations of opioids mixed with an antagonist. The ratio of naloxone with opioids, at which mice did not show place preference, may be an effective index for developing abuse-deterrent formulations. Ratios may be calculated for other opioids based on µ-opioid receptor binding affinity and BBB permeability.


Assuntos
Formulações de Dissuasão de Abuso , Transtornos Relacionados ao Uso de Opioides , Camundongos , Estados Unidos , Animais , Analgésicos Opioides/farmacologia , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Naloxona , Antagonistas de Entorpecentes/farmacologia , Antagonistas de Entorpecentes/uso terapêutico
9.
Neurochem Int ; 162: 105438, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351540

RESUMO

Dopamine regulates psychomotor function by D1 receptor/PKA-dependent phosphorylation of DARPP-32. DARPP-32, phosphorylated at Thr34 by PKA, inhibits protein phosphatase 1 (PP1), and amplifies the phosphorylation of other PKA/PP1 substrates following D1 receptor activation. In addition to the D1 receptor/PKA/DARPP-32 signaling pathway, D1 receptor stimulation is known to activate Rap1/ERK signaling. Rap1 activation is mediated through the phosphorylation of Rasgrp2 (guanine nucleotide exchange factor; activation) and Rap1gap (GTPase-activating protein; inhibition) by PKA. In this study, we investigated the role of PP1 inhibition by phospho-Thr34 DARPP-32 in the D1 receptor-induced phosphorylation of Rasgrp2 and Rap1gap at PKA sites. The analyses in striatal and NAc slices from wild-type and DARPP-32 knockout mice revealed that the phosphorylation of Rasgrp2 at Ser116/Ser117 and Ser586, but not of Rasgrp2 at Ser554 or Rap1gap at Ser441 or Ser499 induced by a D1 receptor agonist, is under the control of the DARPP-32/PP1. The results were supported by pharmacological analyses using a selective PP1 inhibitor, tautomycetin. In addition, analyses using a PP1 and PP2A inhibitor, okadaic acid, revealed that all sites of Rasgrp2 and Rap1gap were regulated by PP2A. Thus, the interactive machinery of DARPP-32/PP1 may contribute to efficient D1 receptor signaling via Rasgrp2/Rap1 in the striatum.


Assuntos
Corpo Estriado , Neostriado , Animais , Camundongos , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 1/farmacologia , Corpo Estriado/metabolismo , Neostriado/metabolismo , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Transdução de Sinais , Fosforilação , Receptores de Dopamina D1/metabolismo
10.
Nagoya J Med Sci ; 84(3): 547-553, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36237888

RESUMO

Although the Cockcroft-Gault equation is still used for the dose adjustment of many drugs that have been approved prior to creatinine standardization, the clinical impact of standardized creatinine in the dose adjustment of capecitabine is poorly understood. We focused on patients with borderline renal function and evaluated the tolerability and safety of capecitabine in patients who received capecitabine plus oxaliplatin (Cape-Ox). We retrospectively identified patients with resected colorectal cancer who had received adjuvant therapy with Cape-Ox regimen. Creatinine clearance (CrCL) was calculated by the Cockcroft-Gault equation with standardized creatinine measured using enzymatic methods, and adjusted CrCL was estimated by adding 0.2 (mg/dL) to the serum creatinine in the equation. We defined patients with "pseudo-normal" renal function as those who had an adjusted CrCL of ≤50 mL/min in patients with normal renal function (CrCL >50 mL/min). We evaluated the tolerability and grade 2 or severer adverse events of capecitabine treatment. One hundred four patients had normal and 10 had impaired renal function (CrCL <50 mL/min). Among the 104 patients with normal renal function, 23 (22.1%) had pseudo-normal renal function. Seventeen patients completed the eight cycles of Cape-Ox therapy without treatment delay or dose reduction, and all of them had truly normal renal function. The patients with pseudo-normal renal function were more likely to have grade 2 or severer thrombocytopenia than those with truly normal renal function. We should recognize correctly the clinical impact of standardized creatinine in the treatment of borderline renal function with Cape-Ox regimen in patients.

11.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232945

RESUMO

Dopamine regulates emotional behaviors, including rewarding and aversive behaviors, through the mesolimbic dopaminergic pathway, which projects dopamine neurons from the ventral tegmental area to the nucleus accumbens (NAc). Protein phosphorylation is critical for intracellular signaling pathways and physiological functions, which are regulated by neurotransmitters in the brain. Previous studies have demonstrated that dopamine stimulated the phosphorylation of intracellular substrates, such as receptors, ion channels, and transcription factors, to regulate neuronal excitability and synaptic plasticity through dopamine receptors. We also established a novel database called KANPHOS that provides information on phosphorylation signals downstream of monoamines identified by our kinase substrate screening methods, including dopamine, in addition to those reported in the literature. Recent advances in proteomics techniques have enabled us to clarify the mechanisms through which dopamine controls rewarding and aversive behaviors through signal pathways in the NAc. In this review, we discuss the intracellular phosphorylation signals regulated by dopamine in these two emotional behaviors.


Assuntos
Dopamina , Área Tegmentar Ventral , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurotransmissores/metabolismo , Núcleo Accumbens/metabolismo , Fosforilação , Receptores Dopaminérgicos/metabolismo , Fatores de Transcrição/metabolismo , Área Tegmentar Ventral/metabolismo
12.
Cell Rep ; 40(10): 111309, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070693

RESUMO

Dysfunctional dopamine signaling is implicated in various neuropsychological disorders. Previously, we reported that dopamine increases D1 receptor (D1R)-expressing medium spiny neuron (MSN) excitability and firing rates in the nucleus accumbens (NAc) via the PKA/Rap1/ERK pathway to promote reward behavior. Here, the results show that the D1R agonist, SKF81297, inhibits KCNQ-mediated currents and increases D1R-MSN firing rates in murine NAc slices, which is abolished by ERK inhibition. In vitro ERK phosphorylates KCNQ2 at Ser414 and Ser476; in vivo, KCNQ2 is phosphorylated downstream of dopamine signaling in NAc slices. Conditional deletion of Kcnq2 in D1R-MSNs reduces the inhibitory effect of SKF81297 on KCNQ channel activity, while enhancing neuronal excitability and cocaine-induced reward behavior. These effects are restored by wild-type, but not phospho-deficient KCNQ2. Hence, D1R-ERK signaling controls MSN excitability via KCNQ2 phosphorylation to regulate reward behavior, making KCNQ2 a potential therapeutical target for psychiatric diseases with a dysfunctional reward circuit.


Assuntos
Dopamina , Canal de Potássio KCNQ2 , Transtornos Mentais , Proteínas do Tecido Nervoso , Animais , Dopamina/metabolismo , Canal de Potássio KCNQ2/metabolismo , Transtornos Mentais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Fosforilação , Receptores de Dopamina D1/metabolismo , Recompensa
13.
Eur J Pharmacol ; 931: 175207, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35987254

RESUMO

Current antipsychotics used to treat schizophrenia have associated problems, including serious side effects and treatment resistance. We recently identified a significant association of schizophrenia with exonic copy number variations in the Rho GTPase activating protein 10 (ARHGAP10) gene using genome-wide analysis. ARHGAP10 encodes a RhoGAP superfamily member that is involved in small GTPase signaling. In mice, Arhgap10 gene variations result in RhoA/Rho-kinase pathway activation. We evaluated the pharmacokinetics of fasudil and hydroxyfasudil using liquid chromatography-tandem mass spectrometry in mice. The antipsychotic effects of fasudil on hyperlocomotion, social interaction deficits, prepulse inhibition deficits, and novel object recognition deficits were also investigated in a MK-801-treated pharmacological mouse schizophrenia model. Fasudil and its major metabolite, hydroxyfasudil, were detected in the brain at concentrations above their respective Ki values for Rho-kinase after intraperitoneal injection of 10 mg kg-1 fasudil. Fasudil improved the hyperlocomotion, social interaction deficits, prepulse inhibition deficits, and novel object recognition deficits in MK-801-treated mice in a dose-dependent manner. Following oral administration of fasudil, brain hydroxyfasudil was detected at concentration above the Ki value for Rho-kinase whilst fasudil was undetectable. MK-801-induced hyperlocomotion was also improved by oral fasudil administration. These results suggest that fasudil has antipsychotic-like effects on the MK-801-treated pharmacological mouse schizophrenia model. There are two isoforms in Rho-kinase, and further investigation is needed to clarify the isoforms involved in the antipsychotic-like effects of fasudil in the MK-801-treated mouse schizophrenia model.


Assuntos
Antipsicóticos , Esquizofrenia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Maleato de Dizocilpina/farmacologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Esquizofrenia/tratamento farmacológico , Quinases Associadas a rho
14.
Mol Psychiatry ; 27(8): 3479-3492, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35665767

RESUMO

Acetylcholine is a neuromodulator critical for learning and memory. The cholinesterase inhibitor donepezil increases brain acetylcholine levels and improves Alzheimer's disease (AD)-associated learning disabilities. Acetylcholine activates striatal/nucleus accumbens dopamine receptor D2-expressing medium spiny neurons (D2R-MSNs), which regulate aversive learning through muscarinic receptor M1 (M1R). However, how acetylcholine stimulates learning beyond M1Rs remains unresolved. Here, we found that acetylcholine stimulated protein kinase C (PKC) in mouse striatal/nucleus accumbens. Our original kinase-oriented phosphoproteomic analysis revealed 116 PKC substrate candidates, including Rac1 activator ß-PIX. Acetylcholine induced ß-PIX phosphorylation and activation, thereby stimulating Rac1 effector p21-activated kinase (PAK). Aversive stimulus activated the M1R-PKC-PAK pathway in mouse D2R-MSNs. D2R-MSN-specific expression of PAK mutants by the Cre-Flex system regulated dendritic spine structural plasticity and aversive learning. Donepezil induced PAK activation in both accumbal D2R-MSNs and in the CA1 region of the hippocampus and enhanced D2R-MSN-mediated aversive learning. These findings demonstrate that acetylcholine stimulates M1R-PKC-ß-PIX-Rac1-PAK signaling in D2R-MSNs for aversive learning and imply the cascade's therapeutic potential for AD as aversive learning is used to preliminarily screen AD drugs.


Assuntos
Acetilcolina , Quinases Ativadas por p21 , Animais , Camundongos , Proteína Quinase C , Donepezila/farmacologia , Encéfalo
15.
Behav Brain Res ; 416: 113569, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34499931

RESUMO

The Reelin gene (RELN) encodes a large extracellular protein, which has multiple roles in brain development and adult brain function. It activates a series of neuronal signal transduction pathways in the adult brain that function in synaptic plasticity, dendritic morphology, and cognitive function. To further investigate the roles of Reln in brain function, we generated a mouse line using the C57BL/6 J strain with the specific Reln deletion identified from a Japanese patient with schizophrenia (Reln-del mice). These mice exhibited abnormal sociality, but the pathophysiological significance of the Reln deletion for higher brain functions, such as learning and behavioral flexibility remains unclear. In this study, cognitive function in Reln-del mice was assessed using touchscreen-based visual discrimination (VD) and reversal learning (RL) tasks. Reln-del mice showed normal learning in the simple VD task, but the learning was delayed in the complex VD task as compared to their wild-type (WT) littermates. In the RL task, sessions were divided into early perseverative phase (sessions with <50% correct) and later learning phase (sessions with ≥50% correct). Reln-del mice showed normal perseveration but impaired relearning ability in both simple RL and complex RL task as compared to WT mice. These results suggest that Reln-del mice have impaired learning ability, but the behavioral flexibility is unaffected. Overall, the observed behavioral abnormalities in Reln-del mice suggest that this mouse model is a useful preclinical tool for investigating the neurobiological mechanism underlying cognitive impairments in schizophrenia and a therapeutic strategy.


Assuntos
Aprendizagem por Discriminação/fisiologia , Proteína Reelina/genética , Reversão de Aprendizagem/fisiologia , Esquizofrenia/genética , Percepção Visual/genética , Animais , Cognição/fisiologia , Modelos Animais de Doenças , Deleção de Genes , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo
16.
J Neurochem ; 160(3): 325-341, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34878647

RESUMO

The nucleus accumbens (NAc) plays critical roles in emotional behaviors, including aversive learning. Aversive stimuli such as an electric foot shock increase acetylcholine (ACh) in the NAc, and muscarinic signaling appears to increase neuronal excitability and aversive learning. Muscarinic signaling inhibits the voltage-dependent potassium KCNQ current which regulates neuronal excitability, but the regulatory mechanism has not been fully elucidated. Phosphorylation of KCNQ2 at threonine 217 (T217) and its inhibitory effect on channel activity were predicted. However, whether and how muscarinic signaling phosphorylates KCNQ2 in vivo remains unclear. Here, we found that PKC directly phosphorylated KCNQ2 at T217 in vitro. Carbachol and a muscarinic M1 receptor (M1R) agonist facilitated KCNQ2 phosphorylation at T217 in NAc/striatum slices in a PKC-dependent manner. Systemic administration of the cholinesterase inhibitor donepezil, which is commonly used to treat dementia, and electric foot shock to mice induced the phosphorylation of KCNQ2 at T217 in the NAc, whereas phosphorylation was suppressed by an M1R antagonist. Conditional deletion of Kcnq2 in the NAc enhanced electric foot shock induced aversive learning. Our findings indicate that muscarinic signaling induces the phosphorylation of KCNQ2 at T217 via PKC activation for aversive learning.


Assuntos
Aprendizagem da Esquiva/fisiologia , Canal de Potássio KCNQ2/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleo Accumbens/metabolismo , Sistema Nervoso Parassimpático/fisiologia , Proteína Quinase C/metabolismo , Receptores Muscarínicos/fisiologia , Animais , Carbacol/farmacologia , Inibidores da Colinesterase/farmacologia , Donepezila/farmacologia , Canal de Potássio KCNQ2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agonistas Muscarínicos/farmacologia , Antagonistas Muscarínicos/farmacologia , Proteínas do Tecido Nervoso/genética , Fosforilação , Receptor Muscarínico M2/efeitos dos fármacos
17.
Pharmacol Res ; 173: 105832, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34450306

RESUMO

Reelin, a large extracellular matrix protein, helps to regulate neuronal plasticity and cognitive function. Several studies have shown that Reelin dysfunction, resulting from factors such as mutations in gene RELN or low Reelin expression, is associated with schizophrenia (SCZ). We previously reported that microinjection of Reelin into cerebral ventricle prevents phencyclidine-induced cognitive and sensory-motor gating deficits. However, it remains unclear whether and how Reelin ameliorates behavioral abnormalities in the animal model of SCZ. In the present study, we evaluated the effect of recombinant Reelin microinjection into the medial prefrontal cortex (mPFC) on abnormal behaviors induced by MK-801, an N-methyl-D-aspartate receptor antagonist. Microinjection of Reelin into the mPFC prevented impairment of recognition memory of MK-801-treated mice in the novel object recognition test (NORT). On the other hand, the same treatment had no effect on deficits in sensory-motor gating and short-term memory in the pre-pulse inhibition and Y-maze tests, respectively. To establish the neural substrates that respond to Reelin, the number of c-Fos-positive cells in the mPFC was determined. A significant increase in c-Fos-positive cells in the mPFC of MK-801-treated mice was observed when compared with saline-treated mice, and this change was suppressed by microinjection of Reelin into the mPFC. A K2360/2467A Reelin that cannot bind to its receptor failed to ameliorate MK-801-induced cognitive deficits in NORT. These results suggest that Reelin prevents MK-801-induced recognition memory impairment by acting on its receptors to suppress neural activity in the mPFC of mice.


Assuntos
Transtornos da Memória/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Proteína Reelina/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Células Cultivadas , Maleato de Dizocilpina , Masculino , Transtornos da Memória/induzido quimicamente , Camundongos Endogâmicos C57BL , Microinjeções , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Córtex Pré-Frontal , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Proteínas Recombinantes/administração & dosagem , Proteína Reelina/genética
18.
Sci Rep ; 11(1): 12873, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145364

RESUMO

The reward system, which consists of dopaminergic neurons projecting from the ventral tegmental area (VTA) to the nucleus accumbens and caudate-putamen in the striatum, has an important role in the pathogenesis of not only drug addiction but also diet-induced obesity. In the present study, we examined whether signaling through glucocorticoid receptors (GRs) in the reward system affects the rewarding value of a high-fat diet (HFD). To do so, we generated mice that lack functional GRs specifically in dopaminergic neurons (D-KO mice) or corticostriatal neurons (CS-KO mice), subjected the mice to caloric restriction stress conditions, and evaluated the rewarding value of a HFD by conditioned place preference (CPP) test. Caloric restriction induced increases in serum corticosterone to similar levels in all genotypes. While CS-KO as well as WT mice exhibited a significant preference for HFD in the CPP test, D-KO mice exhibited no such preference. There were no differences between WT and D-KO mice in consumption of HFD after fasting or cognitive function evaluated by a novel object recognition test. These data suggest that glucocorticoid signaling in the VTA increases the rewarding value of a HFD under restricted caloric stress.


Assuntos
Dieta Hiperlipídica , Neurônios/metabolismo , Receptores de Glucocorticoides/metabolismo , Recompensa , Transdução de Sinais , Área Tegmentar Ventral/metabolismo , Animais , Condicionamento Clássico , Neurônios Dopaminérgicos/metabolismo , Metabolismo Energético , Jejum , Expressão Gênica , Camundongos , Camundongos Transgênicos , Modelos Animais , Receptores de Glucocorticoides/genética , Área Tegmentar Ventral/citologia
19.
Mol Brain ; 14(1): 21, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482876

RESUMO

We recently found a significant association between exonic copy-number variations in the Rho GTPase activating protein 10 (Arhgap10) gene and schizophrenia in Japanese patients. Special attention was paid to one patient carrying a missense variant (p.S490P) in exon 17, which overlapped with an exonic deletion in the other allele. Accordingly, we generated a mouse model (Arhgap10 S490P/NHEJ mice) carrying a missense variant and a coexisting frameshift mutation. We examined the spatiotemporal expression of Arhgap10 mRNA in the brain and found the highest expression levels in the cerebellum, striatum, and nucleus accumbens (NAc), followed by the frontal cortex in adolescent mice. The expression levels of phosphorylated myosin phosphatase-targeting subunit 1 and phosphorylated p21-activated kinases in the striatum and NAc were significantly increased in Arhgap10 S490P/NHEJ mice compared with wild-type littermates. Arhgap10 S490P/NHEJ mice exhibited a significant increase in neuronal complexity and spine density in the striatum and NAc. There was no difference in touchscreen-based visual discrimination learning between Arhgap10 S490P/NHEJ and wild-type mice, but a significant impairment of visual discrimination was evident in Arhgap10 S490P/NHEJ mice but not wild-type mice when they were treated with methamphetamine. The number of c-Fos-positive cells was significantly increased after methamphetamine treatment in the dorsomedial striatum and NAc core of Arhgap10 S490P/NHEJ mice. Taken together, these results suggested that schizophrenia-associated Arhgap10 gene mutations result in morphological abnormality of neurons in the striatum and NAc, which may be associated with vulnerability of cognition to methamphetamine treatment.


Assuntos
Cognição/efeitos dos fármacos , Corpo Estriado/patologia , Proteínas Ativadoras de GTPase/genética , Metanfetamina/farmacologia , Mutação/genética , Neurônios/patologia , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Proteína rhoA de Ligação ao GTP/genética , Animais , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Discriminação Psicológica , Proteínas Ativadoras de GTPase/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
20.
J Neurochem ; 157(6): 1774-1788, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33449379

RESUMO

Dopamine type 1 receptor (D1R) signaling activates protein kinase A (PKA), which then activates mitogen-activated protein kinase (MAPK) through Rap1, in striatal medium spiny neurons (MSNs). MAPK plays a pivotal role in reward-related behavior through the activation of certain transcription factors. How D1R signaling regulates behavior through transcription factors remains largely unknown. CREB-binding protein (CBP) promotes transcription through hundreds of different transcription factors and is also important for reward-related behavior. To identify transcription factors regulated by dopamine signaling in MSNs, we performed a phosphoproteomic analysis using affinity beads coated with CBP. We obtained approximately 40 novel candidate proteins in the striatum of the C57BL/6 mouse brain after cocaine administration. Among them, the megakaryoblastic leukemia-2 (MKL2) protein, a transcriptional coactivator of serum response factor (SRF), was our focus. We found that the interaction between CBP and MKL2 was increased by cocaine administration. Additionally, MKL2, CBP and SRF formed a ternary complex in vivo. The C-terminal domain of MKL2 interacted with CBP-KIX and was phosphorylated by MAPK in COS7 cells. The activation of PKA-MAPK signaling induced the nuclear localization of MKL2 and increased SRF-dependent transcriptional activity in neurons. These results demonstrate that dopamine signaling regulates the interaction of MKL2 with CBP in a phosphorylation-dependent manner and thereby controls SRF-dependent gene expression. Cover Image for this issue: https://doi.org/10.1111/jnc.15067.


Assuntos
Corpo Estriado/metabolismo , Espaço Intracelular/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fator de Resposta Sérica/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia , Animais , Células COS , Chlorocebus aethiops , Cocaína/farmacologia , Corpo Estriado/química , Corpo Estriado/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Feminino , Células HEK293 , Humanos , Espaço Intracelular/química , Espaço Intracelular/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Proteínas Quinases Ativadas por Mitógeno/análise , Técnicas de Cultura de Órgãos , Gravidez , Fator de Resposta Sérica/análise , Fatores de Transcrição/análise , Ativação Transcricional/efeitos dos fármacos , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...