Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS J ; 26(4): 67, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862870

RESUMO

Addressing the intertwined challenges of antimicrobial resistance and impaired wound healing in diabetic patients, an oil/water emulsion-based nano-ointment integrating phenylpropanoids-Eugenol and Cinnamaldehyde-with positively-charged silver nanoparticles was synthesized. The process began with the synthesis and characterization of nano-silver, aimed at ensuring the effectiveness and safety of the nanoparticles in biological applications. Subsequent experiments determined the minimum inhibitory concentration (MIC) against pathogens such as Streptococcus aureus, Pseudomonas aeruginosa and Candida albicans. These MIC values of all three active leads guided the strategic formulation of an ointment base, which effectively integrated the bioactive components. Evaluations of this nano-ointment revealed enhanced antimicrobial activity against both clinical and reference bacterial strains and it maintained stability after freeze-thaw cycles. Furthermore, the ointment demonstrated superior in-vitro diabetic wound healing capabilities and significantly promoted angiogenesis, as shown by enhanced blood vessel formation in the Chorioallantoic Membrane assay. These findings underscore the formulation's therapeutic potential, marking a significant advance in the use of nanotechnology for topical wound care.


Assuntos
Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Pomadas , Prata , Cicatrização , Prata/administração & dosagem , Prata/química , Prata/farmacologia , Cicatrização/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/administração & dosagem , Animais , Acroleína/análogos & derivados , Acroleína/administração & dosagem , Acroleína/farmacologia , Acroleína/química , Candida albicans/efeitos dos fármacos , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Administração Tópica , Humanos , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Staphylococcus aureus/efeitos dos fármacos
2.
J Ethnopharmacol ; 330: 118202, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38641078

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Members of Plectranthus genus such as Plectranthus amboinicus (Lour.) Spreng is a well-known folkloric medicine around the globe in treating several human ailments such as cardiovascular, respiratory, digestive, urinary tract, skin and infective diseases. Its therapeutic value is primarily attributed to its essential oil. Although several properties of Plectranthus amboinicus essential oil have been documented, its mechanism of action and safety has not been completely elucidated. AIM OF THE STUDY: To investigate the anti-infective potential of Plectranthus amboinicus essential oil against Klebsiella pneumoniae using in vitro and in vivo bioassays and identify its mode of action. The study was conducted to scientifically validate the traditional usage of Plectranthus amboinicus oil and propose it as a complementary and alternative medication to combat Klebsiella pneumoniae infections due to emerging antibiotic resistance problem. MATERIALS AND METHODS: Plectranthus amboinicus essential oil was extracted through steam distillation and was chemically characterized using Gas Chromatography Mass Spectrometry (GC-MS). The antibacterial activity was assessed using microbroth dilution assay, metabolic viability assay and growth curve analysis. The mode of action was elucidated by the proteomics approach using Nano-LC-MS/MS followed by in silico analysis. The results of proteomic analysis were further validated through several in vitro assays. The cytotoxic nature of the essential oil was also confirmed using adenocarcinomic human alveolar basal epithelial (A549) cells. Furthermore, the safety and in vivo anti-infective efficacy of Plectranthus amboinicus essential oil was evaluated through survival assay, CFU assay and histopathological analysis of vital organs using zebrafish as a model organism. RESULTS: The chemical characterization of Plectranthus amboinicus essential oil revealed that it is predominantly composed of thymol. Thymol rich P. amboinicus essential oil demonstrated potent inhibitory effects on Klebsiella pneumoniae growth, achieving a significant reduction at a concentration of 400 µg/mL within 4 h of treatment The nano-LC-MS/MS approach unveiled that the essential oil exerted its impact by disrupting the antioxidant defense system and efflux pump system of the bacterium, resulting in elevated cellular oxidative stress and affect the biosynthesis of biofilm. The same was validated through several in vitro assays. Furthermore, the toxicity of Plectranthus amboinicus essential oil determined using A549 cells and zebrafish survival assay established a non-toxic concentration of 400 µg/mL and 12.5 µg/mL respectively. The results of anti-infective potential of the essential oil using Zebrafish as a model organism demonstrated significantly improved survival rates, reduced bacterial load, alleviated visible signs of inflammation and mitigated the adverse effects of infection on various organs, as evidenced by histopathological analysis ensuring its safety for potential therapeutic application. CONCLUSION: The executed in vitro and in vivo assays established the effectiveness of essential oil in inhibiting bacterial growth by targeting key proteins associated with the bacterial antioxidant defense system and disrupted the integrity of the cell membrane, highlighting its critical role in addressing the challenge posed by antibiotic-resistant Klebsiella pneumoniae.


Assuntos
Klebsiella pneumoniae , Óleos Voláteis , Folhas de Planta , Plectranthus , Proteômica , Klebsiella pneumoniae/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Animais , Plectranthus/química , Humanos , Folhas de Planta/química , Antibacterianos/farmacologia , Antibacterianos/isolamento & purificação , Testes de Sensibilidade Microbiana , Peixe-Zebra , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia
3.
Molecules ; 24(17)2019 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-31443467

RESUMO

Biofilm-associated tissue and device infection is a major threat to therapy. The present work aims to potentiate ß-lactam antibiotics with biologically synthesized copper oxide nanoparticles. The synergistic combination of amoxyclav with copper oxide nanoparticles was investigated by checkerboard assay and time-kill assay against bacteria isolated from a burn wound and a urinary catheter. The control of biofilm formation and extracellular polymeric substance production by the synergistic combination was quantified in well plate assay. The effect of copper oxide nanoparticles on the viability of human dermal fibroblasts was evaluated. The minimum inhibitory concentration and minimum bactericidal concentration of amoxyclav were 70 µg/mL and 140 µg/mL, respectively, against Proteus mirabilis and 50 µg/mL and 100 µg/mL, respectively, against Staphylococcus aureus. The synergistic combination of amoxyclav with copper oxide nanoparticles reduced the minimum inhibitory concentration of amoxyclav by 16-fold against P. mirabilis and 32-fold against S. aureus. Above 17.5 µg/mL, amoxyclav exhibited additive activity with copper oxide nanoparticles against P. mirabilis. The time-kill assay showed the efficacy of the synergistic combination on the complete inhibition of P. mirabilis and S. aureus within 20 h and 24 h, respectively, whereas amoxyclav and copper oxide nanoparticles did not inhibit P. mirabilis and S. aureus until 48 h. The synergistic combination of amoxyclav with copper oxide nanoparticles significantly reduced the biofilm formed by P. mirabilis and S. aureus by 85% and 93%, respectively. The concentration of proteins, carbohydrates, and DNA in extracellular polymeric substances of the biofilm was significantly reduced by the synergistic combination of amoxyclav and copper oxide nanoparticles. The fibroblast cells cultured in the presence of copper oxide nanoparticles showed normal morphology with 99.47% viability. No cytopathic effect was observed. Thus, the study demonstrated the re-potentiation of amoxyclav by copper oxide nanoparticles.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cobre/administração & dosagem , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Nanopartículas Metálicas , beta-Lactamas/farmacologia , Antibacterianos/isolamento & purificação , Infecções Bacterianas/microbiologia , Queimaduras/complicações , Sobrevivência Celular/efeitos dos fármacos , Cobre/química , Fibroblastos/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Cateteres Urinários/microbiologia , beta-Lactamas/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...