Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Carcinog ; 63(6): 1051-1063, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38482990

RESUMO

Men with prostate cancer are at increased risk of developing cognitive decline by the use of second-generation androgen signaling inhibitors. To date, reliable and sensitive biomarkers that could distinguish men at high risk of cognitive dysfunction under androgen deprivation therapy (ADT) have not been characterized. We used high-throughput transcriptional profiling utilizing human prostate cancer cell culture models mimicking ADT, biomarker selection using minimal common oncology data elements-cytoscape, and bioinformatic analyses employing Advaita® iPathwayGuide and DisGeNET for identification of disease-related gene associations. Validation analysis of genes was performed on brain neuronal and glial cells by quantitative real-time polymerase chain reaction assay. Our systematic analysis of androgen deprivation-associated genes involved multiple biological processes, including neuroactive ligand-receptor interaction, axon guidance, cytokine-cytokine receptor interaction, and metabolic and cancer signaling pathways. Genes associated with neuroreceptor ligand interaction, including gamma-aminobutyric acid (GABA) A and B receptors and nuclear core proteins, were identified as top upstream regulators. Functional enrichment and protein-protein interaction network analysis highlighted the role of ligand-gated ion channels (LGICs) and their receptors in cognitive dysfunction. Gene-disease association assigned forgetfulness, intellectual disability, visuospatial deficit, bipolar disorder, and other neurocognitive impairment with upregulation of type-1 angiotensin II receptor, brain-derived neurotrophic factor, GABA type B receptor subunit 2 (GABBR2), GABRA3, GABRA5, GABRB1, glycine receptor beta, glutamate ionotropic receptor N-methyl-D-aspartate receptor (NMDA) type subunit 1, glutamate ionotropic receptor NMDA type subunit 2D, 5-hydroxytryptamine receptor 1D, interferon beta 1, and nuclear receptor subfamily 3 group C member 1 as top differentially expressed genes. Validation studies of brain glial cells, neurons, and patients on ADT demonstrated the association of these genes with cognitive decline. Our findings highlight LGICs as potential biomarkers for ADT-mediated cognitive decline. Further validation of these biomarkers may lead to future practical clinical use.


Assuntos
Disfunção Cognitiva , Neoplasias da Próstata , Humanos , Masculino , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antagonistas de Androgênios/efeitos adversos , Antagonistas de Androgênios/farmacologia , Linhagem Celular Tumoral , Canais Iônicos/genética , Canais Iônicos/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mapas de Interação de Proteínas
2.
Mol Cell Biol ; 33(16): 3125-36, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754748

RESUMO

The multiple short introns in Schizosaccharomyces pombe genes with degenerate cis sequences and atypically positioned polypyrimidine tracts make an interesting model to investigate canonical and alternative roles for conserved splicing factors. Here we report functions and interactions of the S. pombe slu7(+) (spslu7(+)) gene product, known from Saccharomyces cerevisiae and human in vitro reactions to assemble into spliceosomes after the first catalytic reaction and to dictate 3' splice site choice during the second reaction. By using a missense mutant of this essential S. pombe factor, we detected a range of global splicing derangements that were validated in assays for the splicing status of diverse candidate introns. We ascribe widespread, intron-specific SpSlu7 functions and have deduced several features, including the branch nucleotide-to-3' splice site distance, intron length, and the impact of its A/U content at the 5' end on the intron's dependence on SpSlu7. The data imply dynamic substrate-splicing factor relationships in multiintron transcripts. Interestingly, the unexpected early splicing arrest in spslu7-2 revealed a role before catalysis. We detected a salt-stable association with U5 snRNP and observed genetic interactions with spprp1(+), a homolog of human U5-102k factor. These observations together point to an altered recruitment and dependence on SpSlu7, suggesting its role in facilitating transitions that promote catalysis, and highlight the diversity in spliceosome assembly.


Assuntos
Regulação Fúngica da Expressão Gênica , Splicing de RNA , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Spliceossomos/genética , Íntrons , Mutação de Sentido Incorreto , Sítios de Splice de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...