Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropsychopharmacol Rep ; 44(2): 399-409, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38558385

RESUMO

AIM: Postmortem brain research is necessary for elucidating the pathology of schizophrenia; an increasing number of studies require a combination of suitable tissue samples preserved at multiple brain banks. In this study, we examined whether a comparative study of protein expression levels can be conducted using postmortem brain samples preserved in different facilities. METHODS: We compared the demographic factors of postmortem brain samples preserved in two institutions and measured and compared the expression levels of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glial fibrillary acidic protein (GFAP) in the prefrontal cortex and superior temporal gyrus. GAPDH is generally used as a loading control for western blotting, and GFAP is considered as an astrocyte marker in the brain. RESULTS: We found significant differences between the two institutions in postmortem interval, age at death, and preservation time. To reduce the effects of these differences on our measurements, the parameters were set as covariates in our analyses of covariance. Subsequently, no differences in GAPDH and GFAP expression were found between institutions. CONCLUSIONS: When studies are conducted using brain samples preserved in different brain banks, differences in demographic factors should be carefully considered and taken into account by statistical methods to minimize their impact as much as possible. Since there was no significant difference in the protein expression levels of GAPDH and GFAP in either region between the two institutions that preserved the postmortem brains, we concluded that it is possible to perform protein quantitative analysis assuming that there is no effect of difference between two institutions.


Assuntos
Proteína Glial Fibrilar Ácida , Bancos de Tecidos , Humanos , Proteína Glial Fibrilar Ácida/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Lobo Temporal/metabolismo
2.
Neuropsychopharmacol Rep ; 44(1): 121-128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38253804

RESUMO

AIM: The etiology of bipolar disorder (BD) remains unknown; however, lipid abnormalities in BD have received increasing attention in recent years. In this study, we examined the expression levels of enzyme proteins associated with the metabolic pathway of phosphoinositides (PIs) and their downstream effectors, protein kinase B (Akt1) and glycogen synthase kinase 3ß (GSK3ß), which have been assumed to be the targets of mood stabilizers such as lithium, in the postmortem brains of patients with BD. METHODS: The protein expression levels of phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C), phosphatidylinositol 4-kinase alpha (PIK4CA), phosphatase and tensin homolog deleted from chromosome 10 (PTEN), Akt1, and GSK3ß were measured using enzyme-linked immunosorbent assays and multiplex fluorescent bead-based immunoassays in the prefrontal cortex (PFC). Specifically, PTEN, Akt1, GSK3ß, and PIP5K1C were measured in seven BD patients and 48 controls. Additionally, PIK4CA was analyzed in 10 cases and 34 controls. RESULTS: PTEN expression levels were markedly decreased in the PFCs of patients with BD, whereas those of Akt and GSK3ß were prominently elevated. Moreover, patients medicated with lithium exhibited higher Akt1 expression levels and lower PTEN expression levels in comparison with the untreated group. CONCLUSION: Our results suggest that the expression levels of Akt1/GSK3ß and its upstream regulator PTEN are considerably altered.


Assuntos
Transtorno Bipolar , Humanos , Lítio , Glicogênio Sintase Quinase 3 beta , Transdução de Sinais/fisiologia , Córtex Pré-Frontal
3.
J Psychiatr Res ; 166: 10-16, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37659266

RESUMO

Schizophrenia is associated with aberration of inhibitory neurons. Although the mu-opioid receptor (MOR) is an essential modulator of inhibitory neurons, the effect of rs1799971 polymorphism in the MOR gene on risk of schizophrenia is controversial. Moreover, the disturbance of opioids systems in patients with schizophrenia has not been fully examined. We firstly conducted preliminary meta-analyses integrating Asian and European populations separately over 12,000 subjects to assess the effect of rs1799971 on risk of schizophrenia. Based on the above result, we also investigated the effect on the expression levels of MOR mRNA in the prefrontal cortex (PFC) and caudate nucleus of 41 postmortem brains. In addition, we determined whether these levels were related to antemortem schizophrenia symptoms and pharmacotherapeutic effects. The rs1799971 G-allele reduced the risk of schizophrenia in Asian populations (OR: 0.56, 95%CI: 0.32-0.98, p = 0.042) but increased it in European populations (OR: 1.66, 95%CI: 1.08-2.56, p = 0.022). It decreased MOR mRNA levels in PFC in the Japanese population (p = 0.031). Increased MOR mRNA level in PFC correlated with higher total score of antemortem schizophrenia symptoms (p = 0.017). Furthermore, the pharmacotherapeutic effect of first-generation antipsychotics was higher for genotype AA than AG/GG of rs1799971 (p = 0.036). The rs1799971 affects risk of schizophrenia and MOR mRNA expression and the effect varies according to ethnicity. Overexpression of MOR might induce severe schizophrenia symptoms. Therefore, MOR modulation may be the key clue for treating antipsychotics-resistant schizophrenia, and genotyping rs1799971 may provide a better pharmacotherapeutic strategy.

4.
Front Psychiatry ; 14: 1183696, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674553

RESUMO

Background: Schizophrenia (SZ) is a disorder diagnosed by specific symptoms and duration and is highly heterogeneous, clinically and pathologically. Although there are an increasing number of studies on the association between genetic and environmental factors in the development of SZ, the actual distribution of the population with different levels of influence of these factors has not yet been fully elucidated. In this study, we focused on stress as an environmental factor and stratified SZ based on the expression levels of stress-responsive molecules in the postmortem prefrontal cortex. Methods: We selected the following stress-responsive molecules: interleukin (IL) -1ß, IL-6, IL-10, tumor necrosis factor-α, interferon-γ, glucocorticoid receptor, brain-derived neurotrophic factor, synaptophysin, S100 calcium-binding protein B, superoxide dismutase, postsynaptic density protein 95, synuclein, apolipoprotein A1 (ApoA1), ApoA2, and solute carrier family 6 member 4. We performed RNA sequencing in the prefrontal gray matter of 25 SZ cases and 21 healthy controls and conducted a hierarchical cluster analysis of SZ based on the gene expression levels of stress-responsive molecules, which yielded two clusters. After assessing the validity of the clusters, they were designated as the high stress-response SZ group and the low stress-response SZ group, respectively. Ingenuity Pathway Analysis of differentially expressed genes (DEGs) between clusters was performed, and Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was conducted on four cases each in the high and low stress-response SZ groups to validate DNA damage. Results: We found higher prevalence of family history of SZ in the low stress-response SZ group (0/3 vs. 5/4, p = 0.04). Pathway analysis of DEGs between clusters showed the highest enrichment for DNA double-strand break repair. TUNEL staining showed a trend toward a lower percentage of TUNEL-positive cells in the high stress-response SZ group. Conclusion: Our results suggest that there are subgroups of SZ with different degrees of stress impact. Furthermore, the pathophysiology of these subgroups may be associated with DNA damage repair. These results provide new insights into the interactions and heterogeneity between genetic and environmental factors.

5.
Front Psychiatry ; 14: 1156524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520228

RESUMO

Background: Evaluating and controlling confounders are necessary when investigating molecular pathogenesis using human postmortem brain tissue. Particularly, tissue pH and RNA integrity number (RIN) are valuable indicators for controlling confounders. However, the influences of these indicators on the expression of each gene in postmortem brain have not been fully investigated. Therefore, we aimed to assess these effects on gene expressions of human brain samples. Methods: We isolated total RNA from occipital lobes of 13 patients with schizophrenia and measured the RIN and tissue pH. Gene expression was analyzed and gene sets affected by tissue pH and RIN were identified. Moreover, we examined the functions of these genes by enrichment analysis and upstream regulator analysis. Results: We identified 2,043 genes (24.7%) whose expressions were highly correlated with pH; 3,004 genes (36.3%) whose expressions were highly correlated with RIN; and 1,293 genes (15.6%) whose expressions were highly correlated with both pH and RIN. Genes commonly affected by tissue pH and RIN were highly associated with energy production and the immune system. In addition, genes uniquely affected by tissue pH were highly associated with the cell cycle, whereas those uniquely affected by RIN were highly associated with RNA processing. Conclusion: The current study elucidated the influence of pH and RIN on gene expression profiling and identified gene sets whose expressions were affected by tissue pH or RIN. These findings would be helpful in the control of confounders for future postmortem brain studies.

6.
J Psychiatr Res ; 163: 74-79, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207434

RESUMO

Schizophrenia (SZ) and bipolar disorder (BD), which are both psychiatric disorders, share some common clinical evidence. We recently discovered that brain capillary angiopathy is another common feature of these psychiatric disorders using fibrin accumulation in vascular endothelial cells as an indicator. This study aimed to characterize the similarities and differences in cerebral capillary injuries in various brain diseases to provide new diagnostic methods for SZ and BD and to develop new therapeutic strategies. We evaluated whether discrepancies exist in the degree of vascular damage among SZ and BD and other brain disorders (amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD)) using postmortem brains. Our results demonstrate that fibrin was strongly accumulated in the capillaries of the grey matter (GM) of brains of patients with SZ and AD and in the capillaries of the white matter (WM) in those of patients with SZ, BD, and AD when compared with control subjects without any psychiatric or neurological disease history. However, ALS and PD brains did not present a significant increase in the amount of accumulated fibrin, either in the capillaries of WM or GM. Furthermore, significant leakage of fibrin into the brain parenchyma, indicating a vascular physical disruption, was observed in the brains of patients with AD but not in the brains of other patients compared with control subjects. In conclusion, our work reveals that Fibrin-accumulation in the brain capillaries are observed in psychiatric disorders, such as SZ, BD, and AD. Furthermore, fibrin-accumulating, nonbreaking type angiopathy is characteristic of SZ and BD, even though there are regional differences between these diseases.


Assuntos
Doença de Alzheimer , Esclerose Lateral Amiotrófica , Transtorno Bipolar , Lesões Encefálicas Traumáticas , Esquizofrenia , Humanos , Transtorno Bipolar/complicações , Esquizofrenia/complicações , Doença de Alzheimer/complicações , Capilares , Células Endoteliais , Encéfalo
7.
Transl Psychiatry ; 13(1): 144, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142572

RESUMO

Schizophrenia is a multifactorial disorder, the genetic architecture of which remains unclear. Although many studies have examined the etiology of schizophrenia, the gene sets that contribute to its symptoms have not been fully investigated. In this study, we aimed to identify each gene set associated with corresponding symptoms of schizophrenia using the postmortem brains of 26 patients with schizophrenia and 51 controls. We classified genes expressed in the prefrontal cortex (analyzed by RNA-seq) into several modules by weighted gene co-expression network analysis (WGCNA) and examined the correlation between module expression and clinical characteristics. In addition, we calculated the polygenic risk score (PRS) for schizophrenia from Japanese genome-wide association studies, and investigated the association between the identified gene modules and PRS to evaluate whether genetic background affected gene expression. Finally, we conducted pathway analysis and upstream analysis using Ingenuity Pathway Analysis to clarify the functions and upstream regulators of symptom-related gene modules. As a result, three gene modules generated by WGCNA were significantly correlated with clinical characteristics, and one of these showed a significant association with PRS. Genes belonging to the transcriptional module associated with PRS significantly overlapped with signaling pathways of multiple sclerosis, neuroinflammation, and opioid use, suggesting that these pathways may also be profoundly implicated in schizophrenia. Upstream analysis indicated that genes in the detected module were profoundly regulated by lipopolysaccharides and CREB. This study identified schizophrenia symptom-related gene sets and their upstream regulators, revealing aspects of the pathophysiology of schizophrenia and identifying potential therapeutic targets.


Assuntos
Redes Reguladoras de Genes , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Estudo de Associação Genômica Ampla , Transcriptoma , Perfilação da Expressão Gênica , Encéfalo/metabolismo
8.
Neurochem Res ; 47(9): 2715-2727, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35469366

RESUMO

The family of epidermal growth factor (EGF) including neuregulin-1 are implicated in the neuropathology of schizophrenia. We established a rat model of schizophrenia by exposing perinatal rats to EGF and reported that the auditory pathophysiological traits of this model such as prepulse inhibition, auditory steady-state response, and mismatch negativity are relevant to those of schizophrenia. We assessed the activation status of the auditory cortex in this model, as well as that in patients with schizophrenia, by monitoring the three neural activity-induced proteins: EGR1 (zif268), c-fos, and Arc. Among the activity markers, protein levels of EGR1 were significantly higher at the adult stage in EGF model rats than those in control rats. The group difference was observed despite an EGF model rat and a control rat being housed together, ruling out the contribution of rat vocalization effects. These changes in EGR1 levels were seen to be specific to the auditory cortex of this model. The increase in EGR1 levels were detectable at the juvenile stage and continued until old ages but displayed a peak immediately after puberty, whereas c-fos and Arc levels were nearly indistinguishable between groups at all ages with an exception of Arc decrease at the juvenile stage. A similar increase in EGR1 levels was observed in the postmortem superior temporal cortex of patients with schizophrenia. The commonality of the EGR1 increase indicates that the EGR1 elevation in the auditory cortex might be one of the molecular signatures of this animal model and schizophrenia associating with hallucination.


Assuntos
Córtex Auditivo , Esquizofrenia , Animais , Córtex Auditivo/metabolismo , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fator de Crescimento Epidérmico , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos
9.
Neurosci Res ; 175: 73-81, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34543692

RESUMO

The mechanistic target of rapamycin (mTOR)-signaling and dihydropyrimidinase-like 2 (DPYSL2), which are increasingly gaining attention as potential therapeutic targets for schizophrenia, are connected via Cap-dependent translation of the 5'TOP motif. We quantified the expression of molecules constituting the mTOR-signaling and DPYSL2 in the prefrontal cortex (PFC) and superior temporal gyrus (STG) of postmortem brain tissue samples from 24 patients with schizophrenia and 32 control individuals and conducted association analysis to examine abnormal regulation of DPYSL2 expression by the mTOR-signaling in schizophrenia. The average ribosomal protein S6 (S6) levels in the PFC and STG were lower in patients with schizophrenia (p < 0.01). DPYSL2 expression showed a significant positive correlation with phospho-S6 expression levels, which were effectors of mTOR translational regulation, and the correlation slope between phospho-S6 and DPYSL2 expressions differed between cases and controls. Association analyses of these mTOR-signaling and DPYSL2 alterations with genetic polymorphisms and the clinical profile suggested that certain genetic variants of DPYSL2 require high mTOR-signaling activity. Thus, the findings confirmed decreased S6 expression levels in schizophrenia and supported the relationship between the mTOR-signaling and DPYSL2 via 5'TOP Cap-dependent translation, thus providing insights connecting the two major schizophrenia treatment strategies associated with the mTOR-signaling and DPYSL2.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Esquizofrenia , Encéfalo/metabolismo , Humanos , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
10.
Sci Adv ; 7(46): eabl6077, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757783

RESUMO

Metabolic dysfunction is thought to contribute to the severity of psychiatric disorders; however, it has been unclear whether current high­simple sugar diets contribute to pathogenesis of these diseases. Here, we demonstrate that a high-sucrose diet during adolescence induces psychosis-related behavioral endophenotypes, including hyperactivity, poor working memory, impaired sensory gating, and disrupted interneuron function in mice deficient for glyoxalase-1 (GLO1), an enzyme involved in detoxification of sucrose metabolites. Furthermore, the high-sucrose diet induced microcapillary impairments and reduced brain glucose uptake in brains of Glo1-deficient mice. Aspirin protected against this angiopathy, enhancing brain glucose uptake and preventing abnormal behavioral phenotypes. Similar vascular damage to our model mice was found in the brains of randomly collected schizophrenia and bipolar disorder patients, suggesting that psychiatric disorders are associated with angiopathy in the brain caused by various environmental stresses, including metabolic stress.

11.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-34361045

RESUMO

Phosphoinositides (PIs) play important roles in the structure and function of the brain. Associations between PIs and the pathophysiology of schizophrenia have been studied. However, the significance of the PI metabolic pathway in the pathology of schizophrenia is unknown. We examined the expression of PI signaling-associated proteins in the postmortem brain of schizophrenia patients. Protein expression levels of phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C), phosphatidylinositol 4-kinase alpha (PIK4CA, also known as PIK4A), phosphatase and tensin homolog deleted from chromosome 10 (PTEN), protein kinase B (Akt), and glycogen synthase kinase 3ß (GSK3ß) were measured using enzyme-linked immunosorbent assays and multiplex fluorescent bead-based immunoassays of the prefrontal cortex (PFC) of postmortem samples from 23 schizophrenia patients and 47 normal controls. We also examined the association between PIK4CA expression and its genetic variants in the same brain samples. PIK4CA expression was lower, whereas Akt expression was higher, in the PFC of schizophrenia patients than in that of controls; PIP5K1C, PTEN, and GSK3ß expression was not different. No single-nucleotide polymorphism significantly affected protein expression. We identified molecules involved in the pathology of schizophrenia via this lipid metabolic pathway. These results suggest that PIK4CA is involved in the mechanism underlying the pathogenesis of schizophrenia and is a potential novel therapeutic target.


Assuntos
Fosfatidilinositóis/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Idoso , Feminino , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
12.
Front Psychiatry ; 12: 653821, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815179

RESUMO

Recent studies have lent support to the possibility that inflammation is associated with the pathology of schizophrenia. In the study of measurement of inflammatory mediators, which are markers of inflammation, elevated inflammatory cytokine levels in the brain and blood have been reported in patients with schizophrenia. Several postmortem brain studies have also reported changes in the expression of inflammatory cytokines. However, it is not clear how these elevated inflammatory cytokines interact with other inflammatory mediators, and their association with the pathology of schizophrenia. We comprehensively investigated the expression of 30 inflammatory mediators in the superior temporal gyrus (STG) of 24 patients with schizophrenia and 26 controls using a multiplex method. Overall, inflammatory mediator expression in the STG was mostly unchanged. However, the expression of interleukin (IL)1-α and interferon-gamma-inducible protein (IP)-10 was decreased [IL-1α, median (IQR), 0.51 (0.37-0.70) vs. 0.87 (0.47-1.23), p = 0.01; IP-10, 13.99 (8.00-36.64) vs. 30.29 (10.23-134.73), p = 0.05], whereas that of IFN-α was increased [2.34 (1.84-4.48) vs. 1.94 (1.39-2.36), p = 0.04] in schizophrenia, although these alterations did not remain significant after multiple testing. Clustering based on inflammatory mediator expression pattern and analysis of upstream transcription factors using pathway analysis revealed that the suppression of IL-1α and IP-10 protein expression may be induced by regulation of a common upstream pathway. Neuroinflammation is important in understanding the biology of schizophrenia. While neuroimaging has been previously used, direct observation to determine the expression of inflammatory mediators is necessary. In this study, we identified protein changes, previously unreported, using comprehensive protein analysis in STG. These results provide insight into post-inflammatory alternation in chronic schizophrenia.

13.
Schizophr Bull ; 46(6): 1619-1628, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32285113

RESUMO

Previous studies have indicated associations between several OLIG2 gene single-nucleotide polymorphisms (SNPs) and susceptibility to schizophrenia among Caucasians. Consistent with these findings, postmortem brain and diffusion tensor imaging studies have indicated that the schizophrenia-risk-associated allele (A) in the OLIG2 SNP rs1059004 predicts lower OLIG2 gene expression in the dorsolateral prefrontal cortex (DLPFC) of schizophrenia patients and reduced white matter (WM) integrity of the corona radiata in normal brains among Caucasians. In an effort to replicate the association between this variant and WM integrity among healthy Japanese, we found that the number of A alleles was positively correlated with WM integrity in some fiber tracts, including the right posterior limb of the internal capsule, and with mean blood flow in a widespread area, including the inferior frontal operculum, orbital area, and triangular gyrus. Because the A allele affected WM integrity in opposite directions in Japanese and Caucasians, we investigated a possible association between the OLIG2 gene SNPs and the expression level of OLIG2 transcripts in postmortem DLPFCs. We evaluated rs1059004 and additional SNPs in the 5' upstream and 3' downstream regions of rs1059004 to cover the broader region of the OLIG2 gene. The 2 SNPs (rs1059004 and rs9653711) had opposite effects on OLIG2 gene expression in the DLPFC in Japanese and Caucasians. These findings suggest ethnicity-dependent opposite effects of OLIG2 gene SNPs on WM integrity and OLIG2 gene expression in the brain, which may partially explain the failures in replicating associations between genetic variants and psychiatric phenotypes among ethnicities.


Assuntos
Povo Asiático , Cápsula Interna/patologia , Fator de Transcrição 2 de Oligodendrócitos/genética , Córtex Pré-Frontal/metabolismo , Esquizofrenia , Substância Branca/patologia , População Branca , Adulto , Povo Asiático/etnologia , Povo Asiático/genética , Diagnóstico , Imagem de Tensor de Difusão , Expressão Gênica/genética , Predisposição Genética para Doença , Humanos , Cápsula Interna/diagnóstico por imagem , Polimorfismo de Nucleotídeo Único , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/etnologia , Esquizofrenia/genética , Esquizofrenia/patologia , Substância Branca/diagnóstico por imagem , População Branca/etnologia , População Branca/genética
14.
J Psychiatr Res ; 123: 119-127, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32065947

RESUMO

BACKGROUND: The molecular mechanisms underlying schizophrenia remain largely unclear, and we recently identified multiple proteins significantly altered in the postmortem prefrontal cortex (PFC) of schizophrenia patients amongst which aldehyde dehydrogenase 4 family member A1 (ALDH4A1) was especially elevated. In this study, we aimed to investigate the expression of ALDH4A1 in the PFC and superior temporal gyrus (STG) and to elucidate functional correlations between schizophrenia risk alleles and molecular expression profiles in the postmortem brains of patients with schizophrenia. METHODS: The levels of ALDH4A1 protein expression in the PFC and STG in postmortem brains from 24 patients with schizophrenia, 8 patients with bipolar disorder, and 32 controls were assessed using enzyme-linked immunosorbent assay. Moreover, we explored the associations between ALDH4A1 expression and genetic variants in enzymes associated with proline metabolism, including ALDH4A1 (schizophrenia [n = 22], bipolar disorder [n = 6], controls [n = 11]). RESULTS: ALDH4A1 levels were significantly elevated in both the PFC and STG in patients with schizophrenia and tended to elevate in patients with bipolar disorder. Furthermore, ALDH4A1 expression levels in the PFC were significantly associated with the following three single-nucleotide polymorphisms: rs10882639, rs33823, rs153508. We also found partial coexpression of ALDH4A1 in mitochondria in a subset of putative astrocytes of postmortem brain. LIMITATIONS: Our study population was relatively small, particularly for a genetic study. CONCLUSION: These findings indicate that altered expression of ALDH4A1 may reflect the potential molecular mechanisms underlying the pathogenesis of schizophrenia and bipolar disorder, and may aid in the development of novel drug therapies.


Assuntos
Transtorno Bipolar , Esquizofrenia , 1-Pirrolina-5-Carboxilato Desidrogenase , Transtorno Bipolar/genética , Encéfalo , Humanos , Córtex Pré-Frontal , Prolina , Esquizofrenia/genética
15.
Sci Rep ; 9(1): 14877, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-31619735

RESUMO

Dopamine- and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32) integrates dopaminergic signaling into that of several other neurotransmitters. Calcineurin (CaN), located downstream of dopaminergic pathways, inactivates DARPP-32 by dephosphorylation. Despite several studies have examined their expression levels of gene and protein in postmortem patients' brains, they rendered inconsistent results. In this study, protein expression levels of DARPP-32 and CaN were measured by enzyme-linked immunosorbent assay (ELISA) in the prefrontal cortex (PFC), and nucleus accumbens (NAc) of 49 postmortem samples from subjects with schizophrenia, bipolar disorder, and normal controls. We also examined the association between this expression and genetic variants of 8 dopaminergic system-associated molecules for 55 SNPs in the same postmortem samples. In the PFC of patients with schizophrenia, levels of DARPP-32 were significantly decreased, while those of CaN tended to increase. In the NAc, both of DARPP-32 and CaN showed no significant alternations in patients with schizophrenia or bipolar disorder. Further analysis of the correlation of DARPP-32 and CaN expressions, we found that positive correlations in controls and schizophrenia in PFC, and schizophrenia in NAc. In PFC, the expression ratio of DARPP-32/CaN were significantly lower in schizophrenia than controls. We also found that several of the aforementioned SNPs may predict protein expression, one of which was confirmed in a second independent sample set. This differential expression of DARPP-32 and CaN may reflect potential molecular mechanisms underlying the pathogenesis of schizophrenia and bipolar disorder, or differences between these two major psychiatric diseases.


Assuntos
Transtorno Bipolar/genética , Calcineurina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/genética , Adulto , Animais , Autopsia , Transtorno Bipolar/diagnóstico , Transtorno Bipolar/metabolismo , Transtorno Bipolar/patologia , Estudos de Casos e Controles , Feminino , Expressão Gênica , Humanos , Masculino , Núcleo Accumbens/patologia , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal/patologia , Esquizofrenia/diagnóstico , Esquizofrenia/metabolismo , Esquizofrenia/patologia
16.
EBioMedicine ; 45: 432-446, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31255657

RESUMO

BACKGROUND: Betaine is known to act against various biological stresses and its levels were reported to be decreased in schizophrenia patients. We aimed to test the role of betaine in schizophrenia pathophysiology, and to evaluate its potential as a novel psychotherapeutic. METHODS: Using Chdh (a gene for betaine synthesis)-deficient mice and betaine-supplemented inbred mice, we assessed the role of betaine in psychiatric pathophysiology, and its potential as a novel psychotherapeutic, by leveraging metabolomics, behavioral-, transcriptomics and DNA methylation analyses. FINDINGS: The Chdh-deficient mice revealed remnants of psychiatric behaviors along with schizophrenia-related molecular perturbations in the brain. Betaine supplementation elicited genetic background-dependent improvement in cognitive performance, and suppressed methamphetamine (MAP)-induced behavioral sensitization. Furthermore, betaine rectified the altered antioxidative and proinflammatory responses induced by MAP and in vitro phencyclidine (PCP) treatments. Betaine also showed a prophylactic effect on behavioral abnormality induced by PCP. Notably, betaine levels were decreased in the postmortem brains from schizophrenia, and a coexisting elevated carbonyl stress, a form of oxidative stress, demarcated a subset of schizophrenia with "betaine deficit-oxidative stress pathology". We revealed the decrease of betaine levels in glyoxylase 1 (GLO1)-deficient hiPSCs, which shows elevated carbonyl stress, and the efficacy of betaine in alleviating it, thus supporting a causal link between betaine and oxidative stress conditions. Furthermore, a CHDH variant, rs35518479, was identified as a cis-expression quantitative trait locus (QTL) for CHDH expression in postmortem brains from schizophrenia, allowing genotype-based stratification of schizophrenia patients for betaine efficacy. INTERPRETATION: The present study revealed the role of betaine in psychiatric pathophysiology and underscores the potential benefit of betaine in a subset of schizophrenia. FUND: This study was supported by the Strategic Research Program for Brain Sciences from AMED (Japan Agency for Medical Research and Development) under Grant Numbers JP18dm0107083 and JP19dm0107083 (TY), JP18dm0107129 (MM), JP18dm0107086 (YK), JP18dm0107107 (HY), JP18dm0107104 (AK) and JP19dm0107119 (KH), by the Grant-in-Aid for Scientific Research on Innovative Areas from the MEXT under Grant Numbers JP18H05435 (TY), JP18H05433 (AH.-T), JP18H05428 (AH.-T and TY), and JP16H06277 (HY), and by JSPS KAKENHI under Grant Number JP17H01574 (TY). In addition, this study was supported by the Collaborative Research Project of Brain Research Institute, Niigata University under Grant Numbers 2018-2809 (YK) and RIKEN Epigenetics Presidential Fund (100214-201801063606-340120) (TY).


Assuntos
Betaína/farmacologia , Colina Desidrogenase/genética , Psicotrópicos/farmacologia , Esquizofrenia/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Metilação de DNA/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Genótipo , Humanos , Japão , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Metanfetamina/farmacologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Locos de Características Quantitativas , Esquizofrenia/genética , Esquizofrenia/fisiopatologia
17.
Psychiatry Clin Neurosci ; 73(9): 566-573, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31102310

RESUMO

AIM: Tissue pH and RNA integrity are crucial quality-control indicators of human post-mortem brain tissues in the identification of the pathogeneses of neuropsychiatric disorders, but pH has not been measured as often due to limitations in the amount of tissue available. This study was designed to develop and validate a protocol for tissue pH evaluation using a minimal amount of human post-mortem tissues. METHODS: A procedure that included a proper ratio of brain tissue weight to water for homogenization and the duration of homogenization was designed based on preliminary experiments using mouse brain tissues. The minimal (10 mg) and typical (100 mg) amounts of post-mortem brain tissue from 52 subjects were homogenized in 5 volumes (50 µL/10 mg tissue) and 10 volumes (1000 µL/100 mg tissue) of nuclease-free water and subjected to pH measurements using an InLab Ultra micro pH electrode. RESULTS: The pH values based on the new protocol using a minimal amount of tissue significantly correlated with measurements of the standard protocol (r2 = 0.86). The correlation coefficients of the pH values between gray and white matter of the same brain region, and the values between different brain regions were 0.73 and 0.54, respectively. CONCLUSION: The proposed protocol used one-tenth of the tissue amount of current standard protocol and enabled us to evaluate the exact quality of post-mortem brain tissue subjected to subsequent analyses. The application of this protocol may improve the detection of biological phenomena of interest in post-mortem brain studies by diminishing confounding factors.


Assuntos
Autopsia/normas , Química Encefálica , Encéfalo/metabolismo , Concentração de Íons de Hidrogênio , RNA/metabolismo , Esquizofrenia/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Encéfalo/patologia , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Controle de Qualidade , Esquizofrenia/patologia
18.
Psychiatry Res ; 264: 116-118, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29627696

RESUMO

The relationships between -141C insertion/deletion (Ins/Del) polymorphisms in the dopamine D2 receptor gene and the two dopamine system integrators, i.e., dopamine- and cAMP-regulated phosphoprotein of molecular weight 32 kDa (DARPP-32) and calcineurin (CaN), are still unclear. In this study, we assessed the effect of this polymorphism on DARPP-32 and CaN protein expression in the postmortem striatum of patients with schizophrenia and control individuals. The expression levels of truncated DARPP and CaN were lower in Del allele carriers. These findings provide important insights into the mechanism by which this genotype could result in a poor response to antipsychotic drugs.


Assuntos
Dopamina/genética , Mutação INDEL/genética , Polimorfismo Genético/genética , Receptores de Dopamina D2/genética , Esquizofrenia/genética , Adulto , Alelos , Autopsia , Calcineurina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Feminino , Genótipo , Humanos , Masculino , Neostriado
19.
J Psychiatr Res ; 82: 100-8, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27484635

RESUMO

The Akt signaling pathway involves various cellular processes and depends on extracellular stimuli. Since Akt signaling participates in cytoprotection, synapse plasticity, axon extension, and neurotransmission in the nervous system, alteration in Akt signaling might be a potential cause of schizophrenia. In this study, we performed multiplex fluorescent bead based immunoassays for members of the Akt signaling pathway in postmortem brains of controls and patients with schizophrenia. Vascular endothelial growth factor receptor 2 (VEGFR2/KDR) was significantly decreased in the prefrontal cortex (PFC) of patients with schizophrenia, and the expression level of VEGFR2 was inversely correlated with the positive symptom subscale of the Diagnostic Instrument for Brain Studies (DIBS) in patients with schizophrenia. There was also an increase in phosphorylated Akt1 in the PFC in the patients, though the ratio of phospho/total Akt1 is not significantly different. In the nucleus accumbens (NAcc) there was no significant difference in expression and phosphorylation levels of Akt signaling proteins. Genetic analysis revealed a significant correlation of a SNP of KDR (rs7692791) with ERK1/2 and Akt1 phospho/total rates. Since VEGFR2 participates in angiogenesis and neurotrophic activation, either or both functions might be responsible for onset of schizophrenia.


Assuntos
Regulação da Expressão Gênica/fisiologia , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esquizofrenia/patologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fosforilação , Polimorfismo de Nucleotídeo Único/genética , Mudanças Depois da Morte , Proteínas Proto-Oncogênicas c-akt/genética , Escalas de Graduação Psiquiátrica , Transdução de Sinais/fisiologia , Estatísticas não Paramétricas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
20.
Neuropsychiatr Dis Treat ; 12: 1645-50, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27462157

RESUMO

BACKGROUND: The calcineurin (CaN) inhibitor, tacrolimus, is widely used in patients undergoing allogeneic organ transplantation and in those with certain allergic diseases. Recently, several reports have suggested that CaN is also associated with schizophrenia. However, little data are currently available on the direct effect of tacrolimus on the human brain. CASE: A 23-year-old Japanese female experienced severe delusion of persecution, delusional mood, suspiciousness, aggression, and excitement. She visited our hospital and was diagnosed with schizophrenia. When she was 27 years old, she had severe general fatigue, persistent fever, systemic joint pain, gingival bleeding, and breathlessness and was diagnosed with acute myelomonocytic leukemia. Later she underwent bone marrow transplantation (BMT), she was administered methotrexate and cyclosporin A to prevent graft versus host disease (GVHD). Three weeks after BMT, she showed initial symptoms of GVHD and was prescribed tacrolimus instead of cyclosporin A. Seven months after BMT at the age of 31 years, she died of progression of GVHD. Pathological anatomy was examined after her death, including immunohistochemical analysis of her brain using anti-CaN antibodies. For comparison, we used our previous data from both a schizophrenia group and a healthy control group. No significant differences were observed in the percentage of CaN-immunoreactive neurons among the schizophrenia group, healthy control group, and the tacrolimus case (all P>0.5, analysis of covariance). Compared with the healthy control group and schizophrenia group, the percentages of CaN-immunoreactive neurons in layers III-VI of the BA46 and the putamen tended to be lower in the tacrolimus case. CONCLUSION: Tacrolimus may decrease CaN immunoreactivity in some regions of the human brain. Thus, tacrolimus may introduce side effects such as cognitive dysfunction and extrapyramidal symptoms. In addition, we also found that the effect of tacrolimus on CaN immunore-activity in human brain was stronger than the effect of schizophrenia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...