Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 16(22): e202300942, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37877342

RESUMO

An important part of realizing a carbon-neutral society using ammonia will be the development of an inexpensive yet efficient catalyst for ammonia synthesis under mild reaction conditions (<400 °C, <10 MPa). Here, we report Fe/K(3)/MgO, fabricated via an impregnation method, as a highly active catalyst for ammonia synthesis under mild reaction conditions (350 °C, 1.0 MPa). At the mentioned conditions, the activity of Fe/K(3)/MgO (17.5 mmol h-1 gcat -1 ) was greater than that of a commercial fused iron catalyst (8.6 mmol h-1 gcat -1 ) currently used in the Haber-Bosch process. K doping was found to increase the ratio of Fe0 on the surface and turnover frequency of Fe in our Fe/K(3)/MgO catalyst. In addition, increasing the pressure to 3.0 MPa at the same temperature led to a significant improvement of the ammonia synthesis rate to 29.6 mmol h-1 gcat -1 , which was higher than that of two more expensive, benchmark Ru-based catalysts, which are also potential alternative catalysts. A kinetics analysis revealed that the addition of K enhanced the ammonia synthesis activity at ≥300 °C by changing the main adsorbed species from NH to N which can accelerate dissociative adsorption of nitrogen as the rate limiting step in ammonia synthesis.

2.
JACS Au ; 2(7): 1627-1637, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35911446

RESUMO

Hydrogen is a promising clean energy source. In domestic polymer electrolyte fuel cell systems, hydrogen is produced by reforming of natural gas; however, the reformate contains carbon monoxide (CO) as a major impurity. This CO is removed from the reformate by a combination of the water-gas shift reaction and preferential oxidation of CO (PROX). Currently, Ru-based catalysts are the most common type of PROX catalyst; however, their durability against ammonia (NH3) as an impurity produced in situ from trace amounts of nitrogen also contained in the reformate is an important issue. Previously, we found that addition of Pt to an Ru catalyst inhibited deactivation by NH3. Here, we conducted operando XAFS and FT-IR spectroscopic analyses with simultaneous gas analysis to investigate the cause of the deactivation of an Ru-based PROX catalyst (Ru/α-Al2O3) by NH3 and the mechanism of suppression of the deactivation by adding Pt (Pt/Ru/α-Al2O3). We found that nitric oxide (NO) produced by oxidation of NH3 induces oxidation of the Ru nanoparticle surface, which deactivates the catalyst via a three-step process: First, NO directly adsorbs on Ru0 to form NO-Ruδ+, which then induces the formation of O-Ru n+ by oxidation of the surrounding Ru0. Then, O-Ru m+ is formed by oxidation of Ru0 starting from the O-Ru n+ nuclei and spreading across the surface of the nanoparticle. Pt inhibits this process by alloying with Ru and inducing the decomposition of adsorbed NO, which keeps the Ru in a metallic state.

3.
ACS Omega ; 7(28): 24452-24460, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35874216

RESUMO

Ruthenium catalysts may allow for realization of renewable energy-based ammonia synthesis processes using mild reaction conditions (<400 °C, <10 MPa). However, ruthenium is relatively rare and therefore expensive. Here, we report a Co nanoparticle catalyst loaded on a basic Ba/La2O3 support and prereduced at 700 °C (Co/Ba/La2O3_700red) that showed higher ammonia synthesis activity at 350 °C and 1.0-3.0 MPa than two benchmark Ru catalysts, Cs+/Ru/MgO and Ru/CeO2. The synthesis rate of the catalyst at 350 °C and 1.0 MPa (19.3 mmol h-1 g-1) was 8.0 times that of Co/Ba/La2O3_500red and 6.9 times that of Co/La2O3_700red. The catalyst showed ammonia synthesis activity at temperatures down to 200 °C. Reduction at the high temperature induced the formation of BaO-La2O3 nanofractions around the Co nanoparticles by decomposition of BaCO3, which increased turnover frequency, inhibited the sintering of Co nanoparticles, and suppressed ammonia poisoning. These strategies may also be applicable to other non-noble metal catalysts, such as nickel.

4.
Adv Mater ; 33(16): e2005206, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33751709

RESUMO

Since 1970, people have been making every endeavor to reduce toxic emissions from automobiles. After the development of a three-way catalyst (TWC) that concurrently converts three harmful gases, carbon monoxide (CO), hydrocarbons (HCs), and nitrogen oxides (NOx ), Rh became an essential element in automobile technology because only Rh works efficiently for catalytic NOx reduction. However, due to the sharp price spike in 2007, numerous efforts have been made to replace Rh in TWCs. Nevertheless, Rh remains irreplaceable, and now, the price of Rh is increasing significantly again. Here, it is demonstrated that PdRuM ternary solid-solution alloy nanoparticles (NPs) exhibit highly durable and active TWC performance, which will result in a significant reduction in catalyst cost compared to Rh. This work provides insights into the design of highly durable and efficient functional alloy NPs, guiding how to best take advantage of the configurational entropy in addition to the mixing enthalpy.

5.
Chem Sci ; 11(42): 11413-11418, 2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34094383

RESUMO

This study provides a coreduction methodology for solid solution formation in immiscible systems, with an example of a whole-region immiscible Cu-Ru system. Although the binary Cu-Ru alloy system is very unstable in the bulk state, the atomic-level well-mixed CuRu solid solution nanoparticles were found to have high thermal stability up to at least 773 K in a vacuum. The exhaust purification activity of the CuRu solid solution was comparable to that of face-centred cubic Ru nanoparticles. According to in situ infrared measurements, stronger NO adsorption and higher intrinsic reactivity of the Ru site on the CuRu surface than that of a pure Ru surface were found, affected by atomic-level Cu substitution. Furthermore, CuRu solid solution was a versatile catalyst for purification of all exhaust gases at a stoichiometric oxygen concentration.

6.
RSC Adv ; 10(72): 44191-44195, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35517135

RESUMO

Monometallic (Pd, Ru or Rh) and bimetallic (Pd0.5-Ru0.5) alloy NPs catalysts were examined for the hydrogenation of quinoline. Pd-Ru alloy catalyst showed superior catalytic activity to the traditional Rh catalyst. The characterization of Pd0.5-Ru0.5 catalysts, HAADF-EDX mapping and XPS analysis suggested that the alloy state of PdRu catalysts remained unchanged in the recovered catalyst. Furthermore, the catalyst was highly selective for the hydrogenation of different arenes.

7.
Angew Chem Int Ed Engl ; 58(8): 2230-2235, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30517769

RESUMO

Ru is an important catalyst in many types of reactions. Specifically, Ru is well known as the best monometallic catalyst for oxidation of carbon monoxide (CO) and has been practically used in residential fuel cell systems. However, Ru is a minor metal, and the supply risk often causes violent fluctuations in the price of Ru. Performance-improved and cost-reduced solid-solution alloy nanoparticles of the Cu-Ru system for CO oxidation are now presented. Over the whole composition range, all of the Cux Ru1-x nanoparticles exhibit significantly enhanced CO oxidation activities, even at 70 at % of inexpensive Cu, compared to Ru nanoparticles. Only 5 at % replacement of Ru with Cu provided much better CO oxidation activity, and the maximum activity was achieved by 20 at % replacement of Ru by Cu. The origin of the high catalytic performance was found as CO site change by Cu substitution, which was investigated using in situ Fourier transform infrared spectra and theoretical calculations.

8.
Chempluschem ; 84(5): 442, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31943895

RESUMO

Invited for this month's cover is the group of Dr. Katsutoshi Sato and Prof. Dr. Katsutoshi Nagaoka (Kyoto University) and collaborators at Oita and Kyushu Universities. The cover picture shows the proposed mechanism for automotive exhaust purification over a Pt-Co alloy nanoparticle catalyst with an extremely low Pt/Co molar ratio. In the catalyst, the isolated electron-rich Pt atoms are present on the surface of the nanoparticles and play an important role in NOx capture and activation, which are important elementary steps in exhaust purification. Read the full text of the article at 10.1002/cplu.201800542.

9.
Chempluschem ; 84(5): 447-456, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31943901

RESUMO

There is interest in minimizing or eliminating the use of Pt in catalysts by replacing it with more widely abundant and cost-effective elements. The alloying of Pt with non-noble metals is a potential strategy for reducing Pt use because interactions between Pt and non-noble metals can modify the catalyst structure and electronic properties. Here, a γ-Al2 O3 -supported bimetallic catalyst [Pt(0.1)Co(1)/Al2 O3 ] was prepared which contained 0.1 wt % Pt and 1 wt % Co and thus featured an extremely low Pt : Co ratio (<1 : 30 mol/mol). The Pt and Co in this catalyst formed alloy nanoparticles in which isolated electron-rich Pt atoms were present on the nanoparticle surface. The activity of this Pt(0.1)Co(1)/Al2 O3 catalyst for the purification of automotive exhaust was comparable to the activities of 0.3 and 0.5 wt % Pt/γ-Al2 O3 catalysts. Electron-rich Pt and metallic Co promoted activation of NOx and oxidization of CO and hydrocarbons, respectively. This strategy of tuning the surrounding structure and electronic state of a noble metal by alloying it with an excess of a non-noble metal will enable reduced noble metal use in catalysts for exhaust purification and other environmentally important reactions.

10.
Chem Sci ; 9(8): 2230-2237, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29719696

RESUMO

Ammonia is an important feedstock for producing fertiliser and is also a potential energy carrier. However, the process currently used for ammonia synthesis, the Haber-Bosch process, consumes a huge amount of energy; therefore the development of new catalysts for synthesising ammonia at a high rate under mild conditions (low temperature and low pressure) is necessary. Here, we show that Ru/La0.5Ce0.5O1.75 pre-reduced at an unusually high temperature (650 °C) catalysed ammonia synthesis at extremely high rates under mild conditions; specifically, at a reaction temperature of 350 °C, the rates were 13.4, 31.3, and 44.4 mmol g-1 h-1 at 0.1, 1.0, and 3.0 MPa, respectively. Kinetic analysis revealed that this catalyst is free of hydrogen poisoning under the conditions tested. Electron energy loss spectroscopy combined with O2 absorption capacity measurements revealed that the reduced catalyst consisted of fine Ru particles (mean diameter < 2.0 nm) that were partially covered with partially reduced La0.5Ce0.5O1.75 and were dispersed on a thermostable support. Furthermore, Fourier transform infrared spectra measured after N2 addition to the catalyst revealed that N2 adsorption on Ru atoms that interacted directly with the reduced La0.5Ce0.5O1.75 weakened the N[triple bond, length as m-dash]N bond and thus promoted its cleavage, which is the rate-determining step for ammonia synthesis. Our results indicate that high-temperature pre-reduction of this catalyst, which consists of Ru supported on a thermostable composite oxide with a cubic fluorite structure and containing reducible cerium, resulted in the formation of many sites that were highly active for N2 reduction by hydrogen.

11.
Chemistry ; 24(35): 8742-8746, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29717523

RESUMO

Solid oxide fuel cells (SOFCs) with liquefied petroleum gas (LPG) reduce CO2 emissions due to their high-energy-conversion efficiency. Although SOFCs can convert LPG directly, coking occurs easily by decomposition of hydrocarbons, including C-C bonds on the electrode of fuel cell stacks. It is therefore necessary to develop an active steam pre-reforming catalyst that eliminates the hydrocarbons at low temperature, in which waste heat of SOFCs is used. Herein, we show that the crystal structure of the TiO2 that anchors Rh particles is crucial for catalytic activity of Rh/TiO2 catalysts for propane pre-reforming. Our experimental results revealed that strong metal support interaction (SMSI) induced during H2 pre-reduction were optimized over Rh/TiO2 with a rutile structure; this catalyst catalyzed the reaction much more effectively than conventional Rh/γ-Al2 O3 . In contrast, the SMSI was too strong for Rh/TiO2 with an anatase structure, and the surface of the Rh particles was therefore covered mostly with partially reduced TiO2 . The result was very low activity.

12.
Chem Commun (Camb) ; 54(53): 7298-7301, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29789832

RESUMO

In the presence of a palladium-loaded TiO2 photocatalyst, the cleavage of benzyl phenyl ether in low-molecular-weight alcohol solvents under de-aerated conditions afforded toluene and phenol simultaneously in a 1 : 1 molar ratio.

13.
Sci Adv ; 3(4): e1602747, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28508046

RESUMO

Ammonia has been suggested as a carbon-free hydrogen source, but a convenient method for producing hydrogen from ammonia with rapid initiation has not been developed. Ideally, this method would require no external energy input. We demonstrate hydrogen production by exposing ammonia and O2 at room temperature to an acidic RuO2/γ-Al2O3 catalyst. Because adsorption of ammonia onto the catalyst is exothermic, the catalyst bed is rapidly heated to the catalytic ammonia autoignition temperature, and subsequent oxidative decomposition of ammonia produces hydrogen. A differential calorimeter combined with a volumetric gas adsorption analyzer revealed a large quantity of heat evolved both with chemisorption of ammonia onto RuO2 and acidic sites on the γ-Al2O3 and with physisorption of multiple ammonia molecules.

14.
Chem Sci ; 8(1): 674-679, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28451216

RESUMO

Ammonia is a crucial chemical feedstock for fertilizer production and is a potential energy carrier. However, the current method of synthesizing ammonia, the Haber-Bosch process, consumes a great deal of energy. To reduce energy consumption, a process and a substance that can catalyze ammonia synthesis under mild conditions (low temperature and low pressure) are strongly needed. Here we show that Ru/Pr2O3 without any dopant catalyzes ammonia synthesis under mild conditions at 1.8 times the rates reported with other highly active catalysts. Scanning transmission electron micrograph observations and energy dispersive X-ray analyses revealed the formation of low-crystalline nano-layers of ruthenium on the surface of Pr2O3. Furthermore, CO2 temperature-programmed desorption revealed that the catalyst was strongly basic. These unique structural and electronic characteristics are considered to synergistically accelerate the rate-determining step of NH3 synthesis, cleavage of the N[triple bond, length as m-dash]N bond. We expect that the use of this catalyst will be a starting point for achieving efficient ammonia synthesis.

15.
J Am Chem Soc ; 139(13): 4643-4646, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28338315

RESUMO

We report on novel solid-solution alloy nanoparticles (NPs) of Ru and Cu that are completely immiscible even above melting point in bulk phase. Powder X-ray diffraction, scanning transmission electron microscopy, and energy-dispersive X-ray measurements demonstrated that Ru and Cu atoms were homogeneously distributed in the alloy NPs. Ru0.5Cu0.5 NPs demonstrated higher CO oxidation activity than fcc-Ru NPs, which are known as one of the best monometallic CO oxidation catalysts.

16.
Sci Rep ; 7: 41264, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-28120907

RESUMO

The change in electronic structure of extremely small RhxCuy alloy nanoparticles (NPs) with composition variation was investigated by core-level (CL) and valence-band (VB) hard X-ray photoelectron spectroscopy. A combination of CL and VB spectra analyses confirmed that intermetallic charge transfer occurs between Rh and Cu. This is an important compensation mechanism that helps to explain the relationship between the catalytic activity and composition of RhxCuy alloy NPs. For monometallic Rh and Rh-rich alloy (Rh0.77Cu0.23) NPs, the formation of Rh surface oxide with a non-integer oxidation state (Rh(3-δ)+) resulted in high catalytic activity. Conversely, for alloy NPs with comparable Rh:Cu ratio (Rh0.53Cu0.47 and Rh0.50Cu0.50), the decreased fraction of catalytically active Rh(3-δ)+ oxide is compensated by charge transfer from Cu to Rh. As a result, ensuring negligible change in the catalytic activities of the NPs with comparable Rh:Cu ratio to those of Rh-rich and monometallic Rh NPs.

17.
Chemistry ; 23(1): 57-60, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27787925

RESUMO

The first synthesis of pure Rh1-x Cux solid-solution nanoparticles is reported. In contrast to the bulk state, the solid-solution phase was stable up to 750 °C. Based on facile density-functional calculations, we made a prediction that the catalytic activity of Rh1-x Cux can be maintained even with 50 at % replacement of Rh with Cu. The prediction was confirmed for the catalytic activities on CO and NOx conversions.

18.
Sci Rep ; 6: 28265, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27340099

RESUMO

Rh is one of the most important noble metals for industrial applications. A major fraction of Rh is used as a catalyst for emission control in automotive catalytic converters because of its unparalleled activity toward NOx reduction. However, Rh is a rare and extremely expensive element; thus, the development of Rh alternative composed of abundant elements is desirable. Pd and Ru are located at the right and left of Rh in the periodic table, respectively, nevertheless this combination of elements is immiscible in the bulk state. Here, we report a Pd-Ru solid-solution-alloy nanoparticle (PdxRu1-x NP) catalyst exhibiting better NOx reduction activity than Rh. Theoretical calculations show that the electronic structure of Pd0.5Ru0.5 is similar to that of Rh, indicating that Pd0.5Ru0.5 can be regarded as a pseudo-Rh. Pd0.5Ru0.5 exhibits better activity than natural Rh, which implies promising applications not only for exhaust-gas cleaning but also for various chemical reactions.

19.
ChemSusChem ; 7(12): 3264-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25351412

RESUMO

In polymer electrolyte fuel cell (PEFC) systems, small amounts of ammonia (NH3 ) present in the reformate gas deactivate the supported ruthenium catalysts used for preferential oxidation (PROX) of carbon monoxide (CO). In this study, we investigated how the addition of a small amount of platinum to a Ru/α-Al2 O3 catalyst (Pt/Ru=1:9 w/w) affected the catalyst's PROX activity in both the absence and the presence of NH3 (130 ppm) under conditions mimicking the reformate conditions during steam reforming of natural gas. The activity of undoped Ru/α-Al2 O3 decreased sharply upon addition of NH3 , whereas Pt/Ru/α-Al2 O3 exhibited excellent PROX activity even in the presence of NH3 . Ruthenium K-edge X-ray absorption near-edge structure (XANES) spectra indicated that in the presence of NH3 , some of the ruthenium in the undoped catalyst was oxidized in the presence of NH3 , whereas ruthenium oxidation was not observed with Pt/Ru/α-Al2 O3 . These results suggest that ruthenium oxidation is retarded by the platinum, so that the catalyst shows high activity even in the presence of NH3 .


Assuntos
Óxido de Alumínio/química , Amônia/análise , Monóxido de Carbono/química , Fontes de Energia Elétrica , Platina/química , Rutênio/química , Oxirredução
20.
Dalton Trans ; 43(29): 11295-8, 2014 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-24934183

RESUMO

A hybrid catalyst consisting of polymer-coated Ru nanoparticles (Ru-PVP, PVP: poly(N-vinyl-2-pyrrolidone)) embedded in a porous metal-organic framework of ZIF-8 (Ru-PVP@ZIF-8) was synthesized by the crystallization of ZIF-8 in a methanol solution of Ru-PVP. The structural properties of Ru-PVP@ZIF-8 were examined by N2 gas adsorption, infrared spectra, and X-ray powder diffraction measurements. We successfully identified the most appropriate pretreatment conditions for surface activation of the Ru nanoparticles in the catalyst. The pretreated Ru-PVP@ZIF-8 was applied for a CO oxidation reaction with H2 gas feeds. Ru-PVP@ZIF-8 was found to exhibit higher catalytic activities and higher CO2 selectivity than those observed on a carbon-supported Ru-PVP (Ru-PVP/C), implying that the pores of the ZIF-8 provide a more suitable environment for the reaction with O2 and CO gases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...