Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dermatol Sci ; 113(3): 130-137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38431439

RESUMO

BACKGROUND: "Curved hair" caused by acquired factors is considered to have adverse cosmetic effects, but the detailed mechanism behind curved hair remains obscure. OBJECTIVE: We attempted to clarify the causes of curved hair that appeared to have occurred via acquired factors. METHODS: Outer root sheath cells (ORSC) isolated from plucked human hair follicles were used to evaluate the expression of type IV collagen. Straight and curved hairs with hair follicle tissue attached were also collected from the same individuals and subjected to morphological, immunohistochemical, and gene expression analyses. RESULTS: The amount of type IV collagen increased upon inducing endoplasmic reticulum stress in ORSC. Meanwhile, in curved hair follicle tissue, the gene expression of type IV collagen decreased. In addition, the curved hair follicle tissue obtained from participants in their 30 s to 50 s had distorted shapes compared with that of straight hair from the same individuals. It was also observed that hair matrix cells based on multiple hair germs fused to eventually form a single hair follicle and hair shaft. In curved hair follicle tissue, KRT71 protein, a marker of inner root sheath differentiation, was unevenly distributed and there was elevated expression of Dickkopf-1 (DKK1) protein, an inhibitor of the Wnt signaling pathway. CONCLUSION: Our study revealed the fusion of hair matrix cells during hair follicle regeneration as a cause of acquired curved hair. We consider that such fusion causes hair follicle tissue to abnormally differentiate, resulting in asymmetric hair follicle shapes and curved hair.


Assuntos
Colágeno Tipo IV , Folículo Piloso , Humanos , Folículo Piloso/metabolismo , Colágeno Tipo IV/metabolismo , Cabelo , Diferenciação Celular
2.
Sci Rep ; 12(1): 21110, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473920

RESUMO

Mdmx and Mdm2 are two major suppressor factors for the tumor suppressor gene p53. In central nervous system, Mdmx suppresses the transcriptional activity of p53 and enhances the binding of Mdm2 to p53 for degradation. But Mdmx dynamics in cerebral infarction remained obscure. Here we investigated the role of Mdmx under ischemic conditions and evaluated the effects of our developed small-molecule Protein-Protein Interaction (PPI) inhibitors, K-181, on Mdmx-p53 interactions in vivo and in vitro. We found ischemic stroke decreased Mdmx expression with increased phosphorylation of Mdmx Serine 367, while Mdmx overexpression by AAV-Mdmx showed a neuroprotective effect on neurons. The PPI inhibitor, K-181 attenuated the neurological deficits by increasing Mdmx expression in post-stroke mice brain. Additionally, K-181 selectively inhibited HDAC6 activity and enhanced tubulin acetylation. Our findings clarified the dynamics of Mdmx in cerebral ischemia and provide a clue for the future pharmaceutic development of ischemic stroke.


Assuntos
AVC Isquêmico , Animais , Camundongos , Proteína Supressora de Tumor p53/genética
3.
ACS Med Chem Lett ; 13(7): 1077-1082, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35859864

RESUMO

Inhibition of histone deacetylase 6 (HDAC6) in the brain is a highly attractive therapeutic target for the treatment of neurodegenerative diseases. The low blood-brain barrier permeability of most known HDAC6 inhibitors, however, prevents their application as central nervous system (CNS) drugs. To overcome this problem, we designed and synthesized benzylpiperazine derivatives using a hybrid strategy of combining HDAC6 inhibitors and brain-penetrant histamine H1 receptor antagonists. Introducing the benzylpiperazine units to the cap region of hydroxamate-type HDAC6 inhibitors led us to identify isozyme-selective and CNS-penetrant HDAC6 inhibitor KH-259 (1) with the appropriate pharmacokinetic and safety properties. Intraperitoneal administration of KH-259 (10 mg/kg) had antidepressant activity and increased acetylated α-tubulin in the brain without promoting acetylated histone H3K9. These findings indicate that our hybrid strategy of combining HDAC6 inhibitors and histamine H1 receptor antagonists is an effective methodology for designing CNS-penetrant HDAC6 inhibitors.

4.
Yakugaku Zasshi ; 142(4): 431-437, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35370198

RESUMO

Various reports have been published in recent years on the effects of histone deacetylase (HDAC) inhibitors on programmed death ligand 1 (PD-L1) expression in cancer cells. The combination therapy of immune checkpoint inhibitors and HDAC inhibitors utilizing these effects has attracted attention as a new clinical treatment of triple-negative breast cancers. We investigated how the expression level of PD-L1 changes depending on the type of HDAC inhibitor exposed to triple-negative breast cancer cell line MDA-MB-231. We found that the mRNA expression level of PD-L1 was significantly decreased by Vorinostat and K-32 (pan-HDAC inhibitors) at high concentrations exhibiting low cell viability, while it was increased by high concentrations of K-560 (HDAC1,2 inhibitor) and Entinostat (HDAC1,3 inhibitor). On the other hand, the mRNA level of PD-L1 was increased by all of these HDAC inhibitors at low concentrations showing high cell viability. Of particular note, K-32 induced more PD-L1 mRNA than all the other HDAC inhibitors at the lowest concentration of 0.5 µM. This finding might suggest the usefulness of pan-HDAC inhibitors in clinical treatment in combination with immune checkpoint inhibitors.


Assuntos
Antígeno B7-H1 , Neoplasias de Mama Triplo Negativas , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linhagem Celular , Inibidores de Histona Desacetilases/farmacologia , Humanos , Isoformas de Proteínas/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
5.
Mol Immunol ; 135: 191-203, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33930714

RESUMO

The murine double minute 2 (MDM2) protein is a major negative regulator of the tumour suppressor protein p53. Under normal conditions, MDM2 constantly binds to p53 transactivation domain and/or ubiquinates p53 via its role as E3 ubiquitin ligase to promote p53 degradation as well as nuclear export to maintain p53 levels in cells. Meanwhile, amplification of MDM2 and appearance of MDM2 spliced variants occur in many tumours and normal tissues making it a prognostic indicator for human cancers. The mutation or deletion of p53 protein in half of human cancers inactivates its tumour suppressor activity. However, cancers with wild type p53 have its function effectively inhibited through direct interaction with MDM2 oncoprotein. Here, we described the construction of a MDM2 spliced variant (rMDM215kDa) consisting of SWIB/MDM2 domain and its central region for antibody generation. Biopanning with a human naïve scFv library generated four scFv clones specific to rMDM215kDa. Additionally, the selected scFv clones were able to bind to the recombinant full length MDM2 (rMDM2-FL). Computational prediction showed that the selected scFv clones potentially bind to exon 7-8 of MDM2 while leaving the MDM2/SWIB domain free for p53 interaction. The developed antibodies exhibit good specificity can be further investigated for downstream biomedical and research applications.


Assuntos
Anticorpos Monoclonais/imunologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/imunologia , Anticorpos de Cadeia Única/imunologia , Humanos , Simulação de Acoplamento Molecular , Domínios Proteicos/genética , Isoformas de Proteínas/imunologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação
6.
Chem Biol Drug Des ; 93(5): 657-665, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30721578

RESUMO

Drug design using boron-containing heterocycles has attracted a great deal of attention because these compounds are believed to possess high biological activity. However, information on the synthetic methodology and pharmacokinetic profiling of boron-containing compounds is limited. In this study, we provide a new synthetic route for preparation of spiro-fused benzoxaborin derivatives and investigate their in vitro pharmacokinetic properties. Our efforts led to the successful construction of a chemical library of spiro-fused benzoxaborin derivatives with appropriate physicochemical and in vitro pharmacokinetic properties for oral drugs. These results indicate that the synthesized boron-containing compounds are therefore eligible for classification in a novel chemical library.


Assuntos
Boro/química , Desenho de Fármacos , Indóis/síntese química , Compostos de Espiro/química , Permeabilidade da Membrana Celular/efeitos dos fármacos , Meia-Vida , Humanos , Indóis/farmacocinética , Indóis/farmacologia , Microssomos Hepáticos/metabolismo
7.
Synapse ; 73(1): e22067, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30120794

RESUMO

Dysfunction of mitochondrial activity is often associated with the onset and progress of neurodegenerative diseases. Membrane depolarization induced by Na+ influx increases intracellular Ca2+ levels in neurons, which upregulates mitochondrial activity. However, overlimit of Na+ influx and its prolonged retention ultimately cause excitotoxicity leading to neuronal cell death. To return the membrane potential to the normal level, Na+ /K+ -ATPase exchanges intracellular Na+ with extracellular K+ by consuming a large amount of ATP. This is a reason why mitochondria are important for maintaining neurons. In addition, astrocytes are thought to be important for supporting neighboring neurons by acting as energy providers and eliminators of excessive neurotransmitters. In this study, we examined the meaning of changes in the mitochondrial oxygen consumption rate (OCR) in primary mouse neuronal populations. By varying the medium constituents and using channel modulators, we found that pyruvate rather than lactate supported OCR levels and conferred on neurons resistance to glutamate-mediated excitotoxicity. Under a pyruvate-restricted condition, our OCR monitoring could detect excitotoxicity induced by glutamate at only 10 µM. The OCR monitoring also revealed the contribution of the N-methyl-D-aspartate receptor and Na+ /K+ -ATPase to the toxicity, which allowed evaluating spontaneous excitation. In addition, the OCR monitoring showed that astrocytes preferentially used glutamate, not glutamine, for a substrate of the tricarboxylic acid cycle. This mechanism may be coupled with astrocyte-dependent protection of neurons from glutamate-mediated excitotoxicity. These results suggest that OCR monitoring would provide a new powerful tool to analyze the mechanisms underlying neurotoxicity and protection against it.


Assuntos
Ácido Glutâmico/toxicidade , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Animais , Respiração Celular , Células Cultivadas , Humanos , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ácido Pirúvico/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
ACS Med Chem Lett ; 9(9): 884-888, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30258535

RESUMO

We designed and synthesized a pyrilamine derivative 1 as a selective class I HDAC inhibitor that targets pyrilamine-sensitive proton-coupled organic cation antiporter (PYSOCA) at the blood-brain barrier (BBB). Introduction of pyrilamine moiety to benzamide type HDAC inhibitors kept selective class I HDAC inhibitory activity and increased BBB permeability. Our BBB transport study showed that compound 1 is a substrate of PYSOCA. Thus, our findings suggest that the hybrid method of HDAC inhibitor and substrate of PYSOCA such as pyrilamine is useful for development of HDAC inhibitors with increased BBB permeability.

9.
Skin Pharmacol Physiol ; 30(4): 205-215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28697505

RESUMO

Cosmetic industries have an interest in exploring and developing materials that have the potential to regulate melanin synthesis in human skin. Although melanin protects the skin from ultraviolet irradiation, excess melanin can be undesirable, particularly on the face where spots or freckles are associated with an appearance of aging. In this study, we found that ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid (11α-OH KA) in Pteris dispar Kunze strongly inhibited melanin synthesis by suppressing tyrosinase gene expression. The melanogenic transcription factor microphthalmia-associated transcription factor (MITF) is required for this suppression. However, 11α-OH KA did not modulate the expression level or activity of MITF. Structure-activity relationship analyses suggested that the 11α-OH, 15-oxo, and 16-en moieties of 11α-OH KA are essential for the suppression of melanin synthesis. On the other hand, the 19-COOH moiety is important for preventing cellular toxicity associated with 11α-OH KA and its related compounds. These results suggest that 11α-OH KA is an attractive target for potential use in the production of cosmetic items.


Assuntos
Diterpenos do Tipo Caurano/farmacologia , Melaninas/biossíntese , Preparações Clareadoras de Pele/farmacologia , Pele/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Monofenol Mono-Oxigenase/genética , Extratos Vegetais , Folhas de Planta , Pteris , Pele/metabolismo , Relação Estrutura-Atividade
10.
Pigment Cell Melanoma Res ; 29(5): 578-82, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27333462

RESUMO

Pigmentation in mammals is important for protection of skin and eyes from ultraviolet radiation. Dysregulation of pigmentation is often associated with other conditions that are not directly linked to pigmentation. Here, we isolated spontaneously occurring hypopigmented mice that occasionally experienced severe diarrhea during lactation. Treatment of these mice with dextran sulfate sodium salt, a conventional method to induce acute colitis, caused chronic diarrhea with granulomatous colitis. Gene mapping and sequencing revealed that the mice had a nonsense mutation in the Hermansky-Pudlak syndrome (Hps)5 gene. As some HPS patients can develop granulomatous colitis, the simple induction of chronic colitis in spontaneously mutated Hps5-deficient mice may become an invaluable model for exploring treatment options in patients with HPS as well as other patients with inflammatory bowel disease.


Assuntos
Proteínas de Transporte/genética , Códon sem Sentido , Colite/genética , Modelos Animais de Doenças , Hipopigmentação/genética , Hipopigmentação/patologia , Animais , Doença Crônica , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/toxicidade , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
11.
J Nat Med ; 70(1): 28-35, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26267810

RESUMO

Cosmetic industries focus on developing materials and resources that regulate skin pigmentation. Melanin, the major pigment in human skin, protects the skin against damage from ultraviolet light. An ethanolic extract of the leaves of Callicarpa longissima inhibits melanin production in B16F10 mouse melanoma cells by suppressing microphthalmia-associated transcription factor (MITF) gene expression. Following purification and analysis using liquid chromatography-mass spectrometry (LC-MS), NMR, and biochemical assays, carnosol was determined to be responsible for the major inhibitory effect of the C. longissima extract on melanin production. Carnosol is an oxidative product of carnosic acid, whose presence in the extract was also confirmed by an authentic reference. The carnosol and carnosic acid content in the extract was approximately 16% (w/w). These results suggest that C. longissima is a novel, useful, and attractive source of skin-whitening agents.


Assuntos
Abietanos/farmacologia , Callicarpa/química , Diferenciação Celular/efeitos dos fármacos , Melaninas/biossíntese , Melanoma Experimental/metabolismo , Fator de Transcrição Associado à Microftalmia/biossíntese , Extratos Vegetais/farmacologia , Abietanos/química , Abietanos/metabolismo , Animais , Linhagem Celular Tumoral , Cromatografia Líquida , Expressão Gênica/efeitos dos fármacos , Humanos , Espectrometria de Massas , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Preparações Clareadoras de Pele/farmacologia , Pigmentação da Pele/efeitos dos fármacos
12.
Environ Toxicol Pharmacol ; 39(1): 292-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25543211

RESUMO

The carbamate fungicide benomyl reportedly inhibited the growth of the human breast cancer cell line MCF-7 by inducing apoptosis. However, influence of benomyl on the expression and activity of aromatase of MCF-7 cells remains to be examined, since benomyl was identified as an endocrine disruptor. We here confirmed through cell cycle analysis and immunofluorescence staining that benomyl damaged microtubules and caused apoptosis. We also found that benomyl inhibited histone deacetylase (HDAC) 1 and accumulated acetylated histone H3 in MCF-7 cells. Additionally, benomyl enhanced the levels of aromatase protein and mRNA, albeit at high concentrations. It is thus likely that benomyl enhanced the promoter activity of the aromatase gene via acetylation of histone H3 as does the HDAC inhibitor Vorinostat. In conclusion, benomyl remains to be a risk factor as an endocrine disruptor for breast cancer.


Assuntos
Aromatase/genética , Aromatase/metabolismo , Benomilo/toxicidade , Fungicidas Industriais/toxicidade , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/toxicidade , Neoplasias da Mama/enzimologia , Neoplasias da Mama/genética , Histona Desacetilase 1/antagonistas & inibidores , Histonas/metabolismo , Humanos , Células MCF-7
13.
Genes (Basel) ; 5(4): 1095-114, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25513882

RESUMO

Memantine is a non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor, and is an approved drug for the treatment of moderate-to-severe Alzheimer's disease. We identified a mouse strain with a naturally occurring mutation and an ataxic phenotype that presents with severe leg cramps. To investigate the phenotypes of these mutant mice, we screened several phenotype-modulating drugs and found that memantine (10 mg/kg) disrupted the sense of balance in the mutants. Moreover, the mutant mice showed an attenuated optokinetic response (OKR) and impaired OKR learning, which was also observed in wild-type mice treated with memantine. Microsatellite analyses indicated that the Grid2 gene-deletion is responsible for these phenotypes. Patch-clamp analysis showed a relatively small change in NMDA-dependent current in cultured granule cells from Grid2 gene-deleted mice, suggesting that GRID2 is important for correct NMDA receptor function. In general, NMDA receptors are activated after the activation of non-NMDA receptors, such as AMPA receptors, and AMPA receptor dysregulation also occurs in Grid2 mutant mice. Indeed, the AMPA treatment enhanced memantine susceptibility in wild-type mice, which was indicated by balance sense and OKR impairments. The present study explores a new role for GRID2 and highlights the adverse effects of memantine in different genetic backgrounds.

14.
Planta Med ; 80(6): 452-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24687742

RESUMO

Non-small-cell lung carcinomas do not sufficiently respond to cancer chemotherapeutic drugs. Combination effects of cancer chemotherapy drugs (paclitaxel and carboplatin) with nobiletin or powdered Shiikuwasha extract from Citrus depressa were examined by isobologram and combination index analyses. It was demonstrated that the combination generated a synergistic inhibitory effect against the proliferation of the human non-small-cell lung carcinoma cell lines A549 and H460 and that of the two chemotherapy drugs, paclitaxel was responsible for this synergistic effect. Furthermore, the percentage of apoptotic cells was decreased with increasing rates of nobiletin to paclitaxel and carboplatin. These findings were considered to be attributed to the ability of nobiletin to regulate cells in the G1 phase, which escaped cell death initiated by paclitaxel and carboplatin. An antitumor activity assay showed that this combination significantly suppressed the growth of subcutaneous A549 tumor xenografts in nude mice.


Assuntos
Antineoplásicos/uso terapêutico , Carboplatina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Citrus/química , Flavonas/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Paclitaxel/uso terapêutico , Animais , Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica , Apoptose , Carboplatina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sinergismo Farmacológico , Feminino , Flavonas/farmacologia , Humanos , Camundongos Endogâmicos BALB C , Paclitaxel/farmacologia , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
15.
J Nat Med ; 67(4): 705-10, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23208771

RESUMO

Agents to control melanogenesis are in demand for the development of cosmetics to improve pigmentation disorders of skin and hair. In this study, we examined and evaluated the effects of flavonoids on melanogenesis in the melanogenic cells model, murine B16F10 melanoma cells. In the course of this study, we found that incubation of the cells in a medium containing 10 µM of the 4'-O-methylated flavonoids, diosmetin (4'-O-methylluteolin), acacetin (4'-O-methylapigenin) or kaempferide (4'-O-methylkaempferol), increased the melanin contents of the cells 3- to 7-fold higher than the control cells. The concentration-dependence test revealed that 20 µM acacetin showed the highest effect, up to 33-fold higher than the vehicle. On the other hand, the corresponding 4'-OH-type flavonoids, luteolin, apigenin and kaempferol, had a significantly smaller effect. Furthermore, by evaluating the melanogenic proteins, we found that the cells treated with 4'-O-methylated flavonoids showed higher tyrosinase activity, as well as upregulation of tyrosinase expression, preceded by activation of cAMP response element binding protein (CREB) and extracellular signal-regulated kinases types 1 and 2 (ERK1/2). These results indicate that the 4'-O-methyl group of flavonoids plays an important role in the induction of melanogenesis by activating its major signal transduction pathway through the upregulation of phospho-CREB in murine B16F10 melanoma cells.


Assuntos
Flavonoides/farmacologia , Melaninas/biossíntese , Animais , Apigenina/farmacologia , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonas/farmacologia , Luteolina/farmacologia , Melanoma Experimental , Camundongos , Monofenol Mono-Oxigenase/metabolismo
16.
PLoS One ; 7(5): e37803, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22662228

RESUMO

Salt-inducible kinase 3 (SIK3), an AMP-activated protein kinase-related kinase, is induced in the murine liver after the consumption of a diet rich in fat, sucrose, and cholesterol. To examine whether SIK3 can modulate glucose and lipid metabolism in the liver, we analyzed phenotypes of SIK3-deficent mice. Sik3(-/-) mice have a malnourished the phenotype (i.e., lipodystrophy, hypolipidemia, hypoglycemia, and hyper-insulin sensitivity) accompanied by cholestasis and cholelithiasis. The hypoglycemic and hyper-insulin-sensitive phenotypes may be due to reduced energy storage, which is represented by the low expression levels of mRNA for components of the fatty acid synthesis pathways in the liver. The biliary disorders in Sik3(-/-) mice are associated with the dysregulation of gene expression programs that respond to nutritional stresses and are probably regulated by nuclear receptors. Retinoic acid plays a role in cholesterol and bile acid homeostasis, wheras ALDH1a which produces retinoic acid, is expressed at low levels in Sik3(-/-) mice. Lipid metabolism disorders in Sik3(-/-) mice are ameliorated by the treatment with 9-cis-retinoic acid. In conclusion, SIK3 is a novel energy regulator that modulates cholesterol and bile acid metabolism by coupling with retinoid metabolism, and may alter the size of energy storage in mice.


Assuntos
Glucose/metabolismo , Metabolismo dos Lipídeos , Proteínas Serina-Treonina Quinases/genética , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Ácido Cólico/metabolismo , Dieta Hiperlipídica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Homeostase/genética , Hipoglicemia/genética , Hipoglicemia/metabolismo , Metabolismo dos Lipídeos/genética , Lipodistrofia/genética , Lipodistrofia/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
17.
Bioorg Med Chem Lett ; 22(5): 1926-30, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22321215

RESUMO

New orally bioavailable 5-(thiophen-2-yl)-substituted 2-aminobenzamide-series histone deacetylase inhibitors were synthesized. These compounds possess a morpholine or piperadine-derived moiety as an aqueous soluble functional group. Among them, 8b, having a 4-ethyl-2,3-dioxopiperazine-1-carboxamide group as a surface recognition domain, showed promising inhibitory activities against HCT116 cell growth and HDAC1/2. Notably, unlike MS-275, this compound did not induce apoptosis in the cell cycle tests. We therefore conducted antitumor tests of 8b and MS-275 against HCT116 cell xenografts in nude mice. Compound 8b reduced the volume of tumor mass to T/C: 60% and 47% at 45 and 80mg/kg over 16days, respectively. These values were comparable to the rate (T/C: 51% at 45mg/kg) for MS-275. Furthermore, 8b, at neither 45 nor 80mg/kg, induced the weight loss which was observed in the mice given MS-275 at 45mg/kg.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Benzamidas/química , Benzamidas/uso terapêutico , Neoplasias do Colo/tratamento farmacológico , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/uso terapêutico , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Benzamidas/farmacocinética , Benzamidas/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Neoplasias do Colo/enzimologia , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Camundongos , Camundongos Nus , Tiofenos/química , Tiofenos/farmacocinética , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Chem Pharm Bull (Tokyo) ; 59(11): 1386-92, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22041075

RESUMO

Histone deacetylase inhibitor (HDACI), suberoylanilide hydroxamic acid (SAHA), approved by the Food and Drug Administration (FDA) for the treatment of cutaneous T cell lymphoma, is a promising new treatment strategy for various cancers. In this study, we hypothesized that a liposomal formulation of HDACI might efficiently deliver HDACI into tumors. To incorporate HDACI efficiently into the liposomal membrane, we synthesized six HDACI-lipid conjugates, in which polyethylene glycol(2000) (PEG(2000))-lipid or cholesterol (Chol) was linked with a potent hydroxamic acid, HDACI, SAHA or K-182, by cleavable linkers, such as ester, carbamide and disulfide bonds. Liposomal HDACI-lipid conjugates were prepared with distearoylphosphatidylcholine (DSPC) and HDACI-Chol conjugate or with DSPC, Chol and HDACI-PEG-lipid conjugates, and their cytotoxicities were evaluated for human cervix tumor HeLa and mouse colon tumor Colon 26 cells. Among the liposomes, liposomal oleyl-PEG(2000)-SAHA conjugated with SAHA and oleyl-PEG(2000) via a carbamate linker showed higher cytotoxicity via hyperacetylation of histone H3 and induction of caspase 3/7 activity. These results suggested that liposomal HDACI-lipid conjugates may be a potential tool for cancer therapy.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/química , Lipídeos/química , Lipossomos/química , Animais , Antineoplásicos/síntese química , Caspase 3/metabolismo , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Colesterol/química , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/química , Camundongos , Neoplasias , Fosfatidilcolinas/química , Polietilenoglicóis/química
19.
PLoS One ; 6(10): e26148, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022544

RESUMO

Flavonoids, which are plant polyphenols, are now widely used in supplements and cosmetics. Here, we report that 4'-methylflavonoids are potent inducers of melanogenesis in B16F10 melanoma cells and in mice. We recently identified salt inducible kinase 2 (SIK2) as an inhibitor of melanogenesis via the suppression of the cAMP-response element binding protein (CREB)-specific coactivator 1 (TORC1). Using an in vitro kinase assay targeting SIK2, we identified fisetin as a candidate inhibitor, possibly being capable of promoting melanogenesis. However, fisetin neither inhibited the CREB-inhibitory activity of SIK2 nor promoted melanogenesis in B16F10 melanoma cells. Conversely, mono-methyl-flavonoids, such as diosmetin (4'-O-metlylluteolin), efficiently inhibited SIK2 and promoted melanogenesis in this cell line. The cAMP-CREB system is impaired in A(y)/a mice and these mice have yellow hair as a result of pheomelanogenesis, while Sik2(+/-); A(y)/a mice also have yellow hair, but activate eumelanogenesis when they are exposed to CREB stimulators. Feeding Sik2(+/-); A(y)/a mice with diets supplemented with fisetin resulted in their hair color changing to brown, and metabolite analysis suggested the presence of mono-methylfisetin in their feces. Thus, we decided to synthesize 4'-O-methylfisetin (4'MF) and found that 4'MF strongly induced melanogenesis in B16F10 melanoma cells, which was accompanied by the nuclear translocation of TORC1, and the 4'-O-methylfisetin-induced melanogenic programs were inhibited by the overexpression of dominant negative TORC1. In conclusion, compounds that modulate SIK2 cascades are helpful to regulate melanogenesis via TORC1 without affecting cAMP levels, and the combined analysis of Sik2(+/-) mice and metabolites from these mice is an effective strategy to identify beneficial compounds to regulate CREB activity in vivo.


Assuntos
Flavonoides/farmacologia , Melaninas/biossíntese , Melanoma Experimental/enzimologia , Melanoma Experimental/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Animais , AMP Cíclico/farmacologia , Flavonoides/química , Células HEK293 , Humanos , Camundongos , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Transcrição/metabolismo
20.
Bioorg Med Chem ; 19(13): 3995-4003, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21664138

RESUMO

We have designed cancer antiproliferative compounds, starting from aniline or phenol derivative, which comprise one or two nitrooxymethylphenyl groups as do the hybrid drugs NCX4040 and NCX530. Compound 2a with p-nitrooxymethylbenzoyl-oxy and -amino groups as well as 8a with a p-nitrooxymethylbenzoylamino group showed more promising effects than NCX4040 against human colon and breast cancer cells. Since 2a and 8a, but not NCX4040, arrested human colon carcinoma HCT116 cells in the M phase, the former two compounds may inhibit cell growth differently from NCX4040. Merged images of immunofluorescence-stained α-tubulin and Hoechst-stained nuclei in human fibrosarcoma HT1080 cells showed that 2a and 8a disrupted microtubule formation just as did vincristine, the tubulin polymerization inhibitor. In experiments in vivo, the intraperitoneal administration of 8a at 80 mg/kg/day reduced the growth of HCT116 xenografts in nude mice to T/C 55%.


Assuntos
Benzoatos/química , Carbamatos/química , Nitratos/química , Moduladores de Tubulina/química , Tubulina (Proteína)/química , Acetatos/química , Animais , Aspirina/análogos & derivados , Aspirina/química , Benzoatos/síntese química , Benzoatos/uso terapêutico , Carbamatos/síntese química , Carbamatos/uso terapêutico , Divisão Celular , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Fase G2 , Humanos , Indóis/química , Camundongos , Camundongos Nus , Nitratos/síntese química , Nitratos/uso terapêutico , Nitrocompostos/química , Relação Estrutura-Atividade , Transplante Heterólogo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/uso terapêutico , Vincristina/química , Vincristina/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...