Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; 63(9): 100259, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35948172

RESUMO

Golgi membrane protein 1 (GOLM1) is a Golgi-resident type 2 transmembrane protein known to be overexpressed in several cancers, including hepatocellular carcinoma (HCC), as well as in viral infections. However, the role of GOLM1 in lipid metabolism remains enigmatic. In this study, we employed siRNA-mediated GOLM1 depletion in Huh-7 HCC cells to study the role of GOLM1 in lipid metabolism. Mass spectrometric lipidomic analysis in GOLM1 knockdown cells showed an aberrant accumulation of sphingolipids, such as ceramides, hexosylceramides, dihexosylceramides, sphinganine, sphingosine, and ceramide phosphate, along with cholesteryl esters. Furthermore, we observed a reduction in phosphatidylethanolamines and lysophosphatidylethanolamines. In addition, Seahorse extracellular flux analysis indicated a reduction in mitochondrial oxygen consumption rate upon GOLM1 depletion. Finally, alterations in Golgi structure and distribution were observed both by electron microscopy imaging and immunofluorescence microscopy analysis. Importantly, we found that GOLM1 depletion also affected cell proliferation and cell cycle progression in Huh-7 HCC cells. The Golgi structural defects induced by GOLM1 reduction might potentially affect the trafficking of proteins and lipids leading to distorted intracellular lipid homeostasis, which may result in organelle dysfunction and altered cell growth. In conclusion, we demonstrate that GOLM1 depletion affects sphingolipid metabolism, mitochondrial function, Golgi structure, and proliferation of HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ciclo Celular , Proliferação de Células , Ceramidas , Ésteres do Colesterol , Humanos , Metabolismo dos Lipídeos , Neoplasias Hepáticas/patologia , Proteínas de Membrana/metabolismo , Fosfatos , Fosfatidiletanolaminas , RNA Interferente Pequeno/metabolismo , Esfingolipídeos , Esfingosina
2.
J Trop Pediatr ; 68(3)2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35657202

RESUMO

We aimed to study the diagnostic utility of cerebrospinal fluid (CSF) procalcitonin (PCT) in neonates with meningitis. All the neonates with sepsis who qualified for lumbar puncture were prospectively evaluated. The neonates were classified into Meningitis and No meningitis group based on predefined criteria. CSF PCT was estimated in these neonates along with cytological and biochemical parameters. A total of 113 neonates were included in the study with 29 in the meningitis group and 84 in the no meningitis group. The median PCT levels were higher in babies with meningitis as compared to those without meningitis [0.194 (0.034-0.534) in meningitis group vs. 0.012 (0.012-0.012) ng/ml in no meningitis group, p < 0.001]. The area under curve for CSF PCT was 0.867 (0.77-0.95) and at a cut-off level of 0.120 ng/ml CSF PCT had a sensitivity of 83%, specificity of 84% and positive and negative predictive likelihood ratios of 5.35 and 0.20, respectively for the diagnosis of meningitis. CSF PCT has a good diagnostic accuracy similar to other parameters in the diagnosis of neonatal meningitis and can be considered as an additional diagnostic marker particularly when CSF culture is negative and cytochemical analysis is inconclusive.


Assuntos
Doenças do Recém-Nascido , Meningites Bacterianas , Biomarcadores , Proteína C-Reativa , Calcitonina/líquido cefalorraquidiano , Líquido Cefalorraquidiano , Humanos , Recém-Nascido , Meningites Bacterianas/líquido cefalorraquidiano , Meningites Bacterianas/diagnóstico , Pró-Calcitonina , Curva ROC , Sensibilidade e Especificidade
3.
Mol Med ; 28(1): 68, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715726

RESUMO

BACKGROUND: Thyroid hormone responsive protein (THRSP) is a lipogenic nuclear protein that is highly expressed in murine adipose tissue, but its role in humans remains unknown. METHODS: We characterized the insulin regulation of THRSP in vivo in human adipose tissue biopsies and in vitro in Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. To this end, we measured whole-body insulin sensitivity using the euglycemic insulin clamp technique in 36 subjects [age 40 ± 9 years, body mass index (BMI) 27.3 ± 5.0 kg/m2]. Adipose tissue biopsies were obtained at baseline and after 180 and 360 min of euglycemic hyperinsulinemia for measurement of THRSP mRNA concentrations. To identify functions affected by THRSP, we performed a transcriptomic analysis of THRSP-silenced SGBS adipocytes. Mitochondrial function was assessed by measuring mitochondrial respiration as well as oxidation and uptake of radiolabeled oleate and glucose. Lipid composition in THRSP silencing was studied by lipidomic analysis. RESULTS: We found insulin to increase THRSP mRNA expression 5- and 8-fold after 180 and 360 min of in vivo euglycemic hyperinsulinemia. This induction was impaired in insulin-resistant subjects, and THRSP expression was closely correlated with whole-body insulin sensitivity. In vitro, insulin increased both THRSP mRNA and protein concentrations in SGBS adipocytes in a phosphoinositide 3-kinase (PI3K)-dependent manner. A transcriptomic analysis of THRSP-silenced adipocytes showed alterations in mitochondrial functions and pathways of lipid metabolism, which were corroborated by significantly impaired mitochondrial respiration and fatty acid oxidation. A lipidomic analysis revealed decreased hexosylceramide concentrations, supported by the transcript concentrations of enzymes regulating sphingolipid metabolism. CONCLUSIONS: THRSP is regulated by insulin both in vivo in human adipose tissue and in vitro in adipocytes, and its expression is downregulated by insulin resistance. As THRSP silencing decreases mitochondrial respiration and fatty acid oxidation, its downregulation in human adipose tissue could contribute to mitochondrial dysfunction. Furthermore, disturbed sphingolipid metabolism could add to metabolic dysfunction in obese adipose tissue.


Assuntos
Adipócitos , Resistência à Insulina , Insulina , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos/metabolismo , Adulto , Animais , Arritmias Cardíacas , Ácidos Graxos/metabolismo , Doenças Genéticas Ligadas ao Cromossomo X , Gigantismo , Cardiopatias Congênitas , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Deficiência Intelectual , Metabolismo dos Lipídeos , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo , Esfingolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...