Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 21(1)2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38091617

RESUMO

Objective.Motor imagery (MI) brain-computer interfaces (BCIs) based on electroencephalogram (EEG) have been developed primarily for stroke rehabilitation, however, due to limited stroke data, current deep learning methods for cross-subject classification rely on healthy data. This study aims to assess the feasibility of applying MI-BCI models pre-trained using data from healthy individuals to detect MI in stroke patients.Approach.We introduce a new transfer learning approach where features from two-class MI data of healthy individuals are used to detect MI in stroke patients. We compare the results of the proposed method with those obtained from analyses within stroke data. Experiments were conducted using Deep ConvNet and state-of-the-art subject-specific machine learning MI classifiers, evaluated on OpenBMI two-class MI-EEG data from healthy subjects and two-class MI versus rest data from stroke patients.Main results.Results of our study indicate that through domain adaptation of a model pre-trained using healthy subjects' data, an average MI detection accuracy of 71.15% (±12.46%) can be achieved across 71 stroke patients. We demonstrate that the accuracy of the pre-trained model increased by 18.15% after transfer learning (p<0.001). Additionally, the proposed transfer learning method outperforms the subject-specific results achieved by Deep ConvNet and FBCSP, with significant enhancements of 7.64% (p<0.001) and 5.55% (p<0.001) in performance, respectively. Notably, the healthy-to-stroke transfer learning approach achieved similar performance to stroke-to-stroke transfer learning, with no significant difference (p>0.05). Explainable AI analyses using transfer models determined channel relevance patterns that indicate contributions from the bilateral motor, frontal, and parietal regions of the cortex towards MI detection in stroke patients.Significance.Transfer learning from healthy to stroke can enhance the clinical use of BCI algorithms by overcoming the challenge of insufficient clinical data for optimal training.


Assuntos
Interfaces Cérebro-Computador , Aprendizado Profundo , Acidente Vascular Cerebral , Humanos , Voluntários Saudáveis , Acidente Vascular Cerebral/diagnóstico , Imagens, Psicoterapia , Eletroencefalografia/métodos , Algoritmos , Imaginação
2.
J Neural Eng ; 20(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36548997

RESUMO

Objective.Channel selection in the electroencephalogram (EEG)-based brain-computer interface (BCI) has been extensively studied for over two decades, with the goal being to select optimal subject-specific channels that can enhance the overall decoding efficacy of the BCI. With the emergence of deep learning (DL)-based BCI models, there arises a need for fresh perspectives and novel techniques to conduct channel selection. In this regard, subject-independent channel selection is relevant, since DL models trained using cross-subject data offer superior performance, and the impact of inherent inter-subject variability of EEG characteristics on subject-independent DL training is not yet fully understood.Approach.Here, we propose a novel methodology for implementing subject-independent channel selection in DL-based motor imagery (MI)-BCI, using layer-wise relevance propagation (LRP) and neural network pruning. Experiments were conducted using Deep ConvNet and 62-channel MI data from the Korea University EEG dataset.Main Results.Using our proposed methodology, we achieved a 61% reduction in the number of channels without any significant drop (p = 0.09) in subject-independent classification accuracy, due to the selection of highly relevant channels by LRP. LRP relevance-based channel selections provide significantly better accuracies compared to conventional weight-based selections while using less than 40% of the total number of channels, with differences in accuracies ranging from 5.96% to 1.72%. The performance of the adapted sparse-LRP model using only 16% of the total number of channels is similar to that of the adapted baseline model (p = 0.13). Furthermore, the accuracy of the adapted sparse-LRP model using only 35% of the total number of channels exceeded that of the adapted baseline model by 0.53% (p = 0.81). Analyses of channels chosen by LRP confirm the neurophysiological plausibility of selection, and emphasize the influence of motor, parietal, and occipital channels in MI-EEG classification.Significance.The proposed method addresses a traditional issue in EEG-BCI decoding, while being relevant and applicable to the latest developments in the field of BCI. We believe that our work brings forth an interesting and important application of model interpretability as a problem-solving technique.


Assuntos
Interfaces Cérebro-Computador , Humanos , Eletroencefalografia/métodos , Redes Neurais de Computação , Imagens, Psicoterapia , Imaginação/fisiologia , Algoritmos
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6334-6340, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892562

RESUMO

Electroencephalogram (EEG)-based brain-computer interface (BCI) systems tend to suffer from performance degradation due to the presence of noise and artifacts in EEG data. This study is aimed at systematically investigating the robustness of state-of-the-art machine learning and deep learning based EEG-BCI models for motor imagery classification against simulated channel-specific noise in EEG data, at various low values of signal-to-noise ratio (SNR). Our results illustrate higher robustness of deep learning based MI classification models compared to the traditional machine learning based model, while identifying a set of channels with large sensitivity to simulated channel-specific noise. The EEGNet is relatively more robust towards channel-specific noise than Shallow ConvNet and FBCSP. We propose a preliminary solution, based on activation function, to improve the robustness of the deep learning models. By using saturating nonlinearities, the percentage drop in classification accuracy for SNR of -18 dB had reduced from 10.99% to 6.53% for EEGNet and 14.05% to 3.57% for Shallow ConvNet. Through this study, we emphasize the need for a more precise solution for enhancing the robustness, and thereby usability of EEG-BCI systems.


Assuntos
Interfaces Cérebro-Computador , Algoritmos , Eletroencefalografia , Imaginação , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...