Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Crystallogr D Struct Biol ; 79(Pt 1): 31-39, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601805

RESUMO

Proteins often assemble into functional complexes, the structures of which are more difficult to obtain than those of the individual protein molecules. Given the structures of the subunits, it is possible to predict plausible complex models via computational methods such as molecular docking. Assessing the quality of the predicted models is crucial to obtain correct complex structures. Here, an energy-scoring function was developed based on the interfacial residues of structures in the Protein Data Bank. The statistically derived energy function (Nepre) imitates the neighborhood preferences of amino acids, including the types and relative positions of neighboring residues. Based on the preference statistics, a program iNepre was implemented and its performance was evaluated with several benchmarking decoy data sets. The results show that iNepre scores are powerful in model ranking to select the best protein complex structures.


Assuntos
Aminoácidos , Proteínas , Aminoácidos/química , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química , Termodinâmica , Conformação Proteica
2.
J Chem Theory Comput ; 17(8): 4961-4980, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34283604

RESUMO

First-principles determination of free energy profiles for condensed-phase chemical reactions is hampered by the daunting costs associated with configurational sampling on ab initio quantum mechanical/molecular mechanical (AI/MM) potential energy surfaces. Here, we report a new method that enables efficient AI/MM free energy simulations through mean force fitting. In this method, a free energy path in collective variables (CVs) is first determined on an efficient reactive aiding potential. Based on the configurations sampled along the free energy path, correcting forces to reproduce the AI/MM forces on the CVs are determined through force matching. The AI/MM free energy profile is then predicted from simulations on the aiding potential in conjunction with the correcting forces. Such cycles of correction-prediction are repeated until convergence is established. As the instantaneous forces on the CVs sampled in equilibrium ensembles along the free energy path are fitted, this procedure faithfully restores the target free energy profile by reproducing the free energy mean forces. Due to its close connection with the reaction path-force matching (RP-FM) framework recently introduced by us, we designate the new method as RP-FM in collective variables (RP-FM-CV). We demonstrate the effectiveness of this method on a type-II solution-phase SN2 reaction, NH3 + CH3Cl (the Menshutkin reaction), simulated with an explicit water solvent. To obtain the AI/MM free energy profiles, we employed the semiempirical AM1/MM Hamiltonian as the base level for determining the string minimum free energy pathway, along which the free energy mean forces are fitted to various target AI/MM levels using the Hartree-Fock (HF) theory, density functional theory (DFT), and the second-order Møller-Plesset perturbation (MP2) theory as the AI method. The forces on the bond-breaking and bond-forming CVs at both the base and target levels are obtained by force transformation from Cartesian to redundant internal coordinates under the Wilson B-matrix formalism, where the linearized FM is facilitated by the use of spline functions. For the Menshutkin reaction tested, our FM treatment greatly reduces the deviations on the CV forces, originally in the range of 12-33 to ∼2 kcal/mol/Å. Comparisons with the experimental and benchmark AI/MM results, tests of the new method under a variety of simulation protocols, and analyses of the solute-solvent radial distribution functions suggest that RP-FM-CV can be used as an efficient, accurate, and robust method for simulating solution-phase chemical reactions.

3.
Molecules ; 23(10)2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30332773

RESUMO

HlyB functions as an adenosine triphosphate (ATP)-binding cassette (ABC) transporter that enables bacteria to secrete toxins at the expense of ATP hydrolysis. Our previous work, based on potential energy profiles from combined quantum mechanical and molecular mechanical (QM/MM) calculations, has suggested that the highly conserved H-loop His residue H662 in the nucleotide binding domain (NBD) of E. coli HlyB may catalyze the hydrolysis of ATP through proton relay. To further test this hypothesis when entropic contributions are taken into account, we obtained QM/MM minimum free energy paths (MFEPs) for the HlyB reaction, making use of the string method in collective variables. The free energy profiles along the MFEPs confirm the direct participation of H662 in catalysis. The MFEP simulations of HlyB also reveal an intimate coupling between the chemical steps and a local protein conformational change involving the signature-loop residue S607, which may serve a catalytic role similar to an Arg-finger motif in many ATPases and GTPases in stabilizing the phosphoryl-transfer transition state.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Escherichia coli/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Sítios de Ligação , Domínio Catalítico , Entropia , Histidina/química , Hidrólise , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína , Teoria Quântica
4.
Nanoscale ; 9(37): 14127-14138, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28902194

RESUMO

This article describes the mechanisms underlying electronic interactions between surface passivating ligands and (CdSe)34 semiconductor cluster molecules (SCMs) that facilitate band-gap engineering through the delocalization of hole wave functions without altering their inorganic core. We show here both experimentally and through density functional theory calculations that the expansion of the hole wave function beyond the SCM boundary into the ligand monolayer depends not only on the pre-binding energetic alignment of interfacial orbitals between the SCM and surface passivating ligands but is also strongly influenced by definable ligand structural parameters such as the extent of their π-conjugation [π-delocalization energy; pyrene (Py), anthracene (Anth), naphthalene (Naph), and phenyl (Ph)], binding mode [dithiocarbamate (DTC, -NH-CS2-), carboxylate (-COO-), and amine (-NH2)], and binding head group [-SH, -SeH, and -TeH]. We observe an unprecedentedly large ∼650 meV red-shift in the lowest energy optical absorption band of (CdSe)34 SCMs upon passivating their surface with Py-DTC ligands and the trend is found to be Ph- < Naph- < Anth- < Py-DTC. This shift is reversible upon removal of Py-DTC by triethylphosphine gold(i) chloride treatment at room temperature. Furthermore, we performed temperature-dependent (80-300 K) photoluminescence lifetime measurements, which show longer lifetime at lower temperature, suggesting a strong influence of hole wave function delocalization rather than carrier trapping and/or phonon-mediated relaxation. Taken together, knowledge of how ligands electronically interact with the SCM surface is crucial to semiconductor nanomaterial research in general because it allows the tuning of electronic properties of nanomaterials for better charge separation and enhanced charge transfer, which in turn will increase optoelectronic device and photocatalytic efficiencies.

5.
J Am Chem Soc ; 138(39): 12813-12825, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27593600

RESUMO

This paper reports large bathochromic shifts of up to 260 meV in both the excitonic absorption and emission peaks of oleylamine (OLA)-passivated molecule-like (CdSe)34 nanocrystals caused by postsynthetic treatment with the electron accepting Cd(O2CPh)2 complex at room temperature. These shifts are found to be reversible upon removal of Cd(O2CPh)2 by N,N,N',N'-tetramethylethylene-1,2-diamine. 1H NMR and FTIR characterizations of the nanocrystals demonstrate that the OLA remained attached to the surface of the nanocrystals during the reversible removal of Cd(O2CPh)2. On the basis of surface ligand characterization, X-ray powder diffraction measurements, and additional control experiments, we propose that these peak red shifts are a consequence of the delocalization of confined exciton wave functions into the interfacial electronic states that are formed from interaction of the LUMO of the nanocrystals and the LUMO of Cd(O2CPh)2, as opposed to originating from a change in size or reorganization of the inorganic core. Furthermore, attachment of Cd(O2CPh)2 to the OLA-passivated (CdSe)34 nanocrystal surface increases the photoluminescence quantum yield from 5% to an unprecedentedly high 70% and causes a 3-fold increase of the photoluminescence lifetime, which are attributed to a combination of passivation of nonradiative surface trap states and relaxation of exciton confinement. Taken together, our work demonstrates the unique aspects of surface ligand chemistry in controlling the excitonic absorption and emission properties of ultrasmall (CdSe)34 nanocrystals, which could expedite their potential applications in solid-state device fabrication.

6.
Bioorg Med Chem Lett ; 25(10): 2133-40, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25891106

RESUMO

Noscapine is an opium-derived kinder-gentler microtubule-modulating drug, currently in Phase I/II clinical trials for cancer chemotherapy. Here, we report the synthesis of four more potent di-substituted brominated derivatives of noscapine, 9-Br-7-OH-NOS (2), 9-Br-7-OCONHEt-NOS (3), 9-Br-7-OCONHBn-NOS (4), and 9-Br-7-OAc-NOS (5) and their chemotherapeutic efficacy on PC-3 and MDA-MB-231 cells. The four derivatives were observed to have higher tubulin binding activity than noscapine and significantly affect tubulin polymerization. The equilibrium dissociation constant (KD) for the interaction between tubulin and 2, 3, 4, 5 was found to be, 55±6µM, 44±6µM, 26±3µM, and 21±1µM respectively, which is comparable to parent analog. The effects of these di-substituted noscapine analogs on cell cycle parameters indicate that the cells enter a quiescent phase without undergoing further cell division. The varying biological activity of these analogs and bulk of substituent at position-7 of the benzofuranone ring system of the parent molecule was rationalized utilizing predictive in silico molecular modeling. Furthermore, the immunoblot analysis of protein lysates from cells treated with 4 and 5, revealed the induction of apoptosis and down-regulation of survivin levels. This result was further supported by the enhanced activity of caspase-3/7 enzymes in treated samples compared to the controls. Hence, these compounds showed a great potential for studying microtubule-mediated processes and as chemotherapeutic agents for the management of human cancers.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Microtúbulos/efeitos dos fármacos , Noscapina/síntese química , Noscapina/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Noscapina/química
7.
Mol Pharm ; 11(12): 4339-49, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25350222

RESUMO

Here, we report improved solubility and enhanced colonic delivery of reduced bromonoscapine (Red-Br-Nos), a cyclic ether brominated analogue of noscapine, upon encapsulation of its cyclodextrin (CD) complexes in bioresponsive guar gum microspheres (GGM). Phase-solubility analysis suggested that Red-Br-Nos complexed with ß-CD and methyl-ß-CD in a 1:1 stoichiometry, with a stability constant (Kc) of 2.29 × 10(3) M(-1) and 4.27 × 10(3) M(-1). Fourier transforms infrared spectroscopy indicated entrance of an O-CH2 or OCH3-C6H4-OCH3 moiety of Red-Br-Nos in the ß-CD or methyl-ß-CD cavity. Furthermore, the cage complex of Red-Br-Nos with ß-CD and methyl-ß-CD was validated by several spectral techniques. Rotating frame Overhauser enhancement spectroscopy revealed that the Ha proton of the OCH3-C6H4-OCH3 moiety was closer to the H5 proton of ß-CD and the H3 proton of the methyl-ß-CD cavity. The solubility of Red-Br-Nos in phosphate buffer saline (PBS, pH ∼ 7.4) was improved by ∼10.7-fold and ∼21.2-fold when mixed with ß-CD and methyl-ß-CD, respectively. This increase in solubility led to a favorable decline in the IC50 by ∼2-fold and ∼3-fold for Red-Br-Nos-ß-CD-GGM and Red-Br-Nos-methyl-ß-CD-GGM formulations respectively, compared to free Red-Br-Nos-ß-CD and Red-Br-Nos-methyl-ß-CD in human colon HT-29 cells. GGM-bearing drug complex formulations were found to be highly cytotoxic to the HT-29 cell line and further effective with simultaneous continuous release of Red-Br-Nos from microspheres. This is the first study to showing the preparation of drug-complex loaded GGMS for colon delivery of Red-Br-Nos that warrants preclinical assessment for the effective management of colon cancer.


Assuntos
Ciclodextrinas/química , Galactanos/química , Mananas/química , Microesferas , Noscapina/química , Gomas Vegetais/química , Varredura Diferencial de Calorimetria , Células HT29 , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier , beta-Ciclodextrinas/química
8.
Biochem Pharmacol ; 92(2): 192-205, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25124704

RESUMO

Noscapine, an opium-derived 'kinder-gentler' microtubule-modulating drug is in Phase I/II clinical trials for cancer chemotherapy. However, its limited water solubility encumbers its development into an oral anticancer drug with clinical promise. Here we report the synthesis of 9 third-generation, water-soluble noscapine analogs with negatively charged sulfonato and positively charged quaternary ammonium groups using noscapine, 9-bromonoscapine and 9-aminonoscapine as scaffolds. The predictive free energy of solvation was found to be lower for sulfonates (6a-c; 8a-c) compared to the quaternary ammonium-substituted counterparts, explaining their higher water solubility. In addition, sulfonates showed higher charge dispersability, which may effectively shield the hydrophobicity of isoquinoline nucleus as indicated by hydrophobicity mapping methods. These in silico data underscore efficient net charge balancing, which may explain higher water solubility and thus enhanced antiproliferative efficacy and improved bioavailability. We observed that 6b, 8b and 8c strongly inhibited tubulin polymerization and demonstrated significant antiproliferative activity against four cancer cell lines compared to noscapine. Molecular simulation and docking studies of tubulin-drug complexes revealed that the brominated compound with a four-carbon chain (4b, 6b, and 8b) showed optimal binding with tubulin heterodimers. Interestingly, 6b, 8b and 8c treated PC-3 cells resulted in preponderance of mitotic cells with multipolar spindle morphology, suggesting that they stall the cell cycle. Furthermore, in vivo pharmacokinetic evaluation of 6b, 8b and 8c revealed at least 1-2-fold improvement in their bioavailability compared to noscapine. To our knowledge, this is the first report to demonstrate novel water-soluble noscapine analogs that may pave the way for future pre-clinical drug development.


Assuntos
Proliferação de Células/efeitos dos fármacos , Inibidores do Crescimento/farmacologia , Microtúbulos/efeitos dos fármacos , Noscapina/análogos & derivados , Moduladores de Tubulina/farmacologia , Água/química , Animais , Proliferação de Células/fisiologia , Relação Dose-Resposta a Droga , Cabras , Inibidores do Crescimento/química , Células HeLa , Humanos , Masculino , Camundongos , Microtúbulos/fisiologia , Noscapina/farmacologia , Estrutura Secundária de Proteína , Solubilidade , Moduladores de Tubulina/química
9.
J Biol Chem ; 289(3): 1649-61, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24280223

RESUMO

Metabotropic glutamate receptor 1α (mGluR1α), a member of the family C G protein-coupled receptors, is emerging as a potential drug target for various disorders, including chronic neuronal degenerative diseases. In addition to being activated by glutamate, mGluR1α is also modulated by extracellular Ca(2+). However, the underlying mechanism is unknown. Moreover, it has long been challenging to develop receptor-specific agonists due to homologies within the mGluR family, and the Ca(2+)-binding site(s) on mGluR1α may provide an opportunity for receptor-selective targeting by therapeutics. In the present study, we show that our previously predicted Ca(2+)-binding site in the hinge region of mGluR1α is adjacent to the site where orthosteric agonists and antagonists bind on the extracellular domain of the receptor. Moreover, we found that extracellular Ca(2+) enhanced mGluR1α-mediated intracellular Ca(2+) responses evoked by the orthosteric agonist l-quisqualate. Conversely, extracellular Ca(2+) diminished the inhibitory effect of the mGluR1α orthosteric antagonist (S)-α-methyl-4-carboxyphenylglycine. In addition, selective positive (Ro 67-4853) and negative (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester) allosteric modulators of mGluR1α potentiated and inhibited responses to extracellular Ca(2+), respectively, in a manner similar to their effects on the response of mGluR1α to glutamate. Mutations at residues predicted to be involved in Ca(2+) binding, including E325I, had significant effects on the modulation of responses to the orthosteric agonist l-quisqualate and the allosteric modulator Ro 67-4853 by extracellular Ca(2+). These studies reveal that binding of extracellular Ca(2+) to the predicted Ca(2+)-binding site in the extracellular domain of mGluR1α modulates not only glutamate-evoked signaling but also the actions of both orthosteric ligands and allosteric modulators on mGluR1α.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Substituição de Aminoácidos , Benzoatos , Sítios de Ligação , Sinalização do Cálcio/efeitos dos fármacos , Carbamatos/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Glicina/análogos & derivados , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Ácido Quisquálico/farmacologia , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/genética , Xantenos/farmacologia
10.
J Chem Inf Model ; 53(2): 403-10, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23312027

RESUMO

Human Cyclophilin A (CypA) catalyzes cis-trans isomerization of the prolyl peptide ω-bond in proteins and is involved in many subcellular processes. CypA has, therefore, been identified as a potential drug target in many diseases, and the development of potent inhibitors with high selectivity is a key objective. In computer-aided drug design, selectivity is improved by taking into account the inherent flexibility of the receptor. However, the relevant receptor conformations to focus on in order to develop highly selective inhibitors are not always obvious from available X-ray crystal structures or ensemble of conformations generated using molecular dynamics simulations. Here, we show that the conformation of the active site of CypA varies as the substrate configuration changes during catalytic turnover. We have analyzed the principal modes of the active site dynamics of CypA from molecular dynamics simulations to show that similar ensembles of enzyme conformations recognize diverse inhibitors and bind the different configurations of the peptide substrate. Small nonpeptidomimetic inhibitors with varying activity are recognized by enzyme ensembles that are similar to those that tightly bind the transition state and cis configurations of the substrate. Our results suggest that enzyme-substrate ensembles are more relevant in structure-based drug design for CypA than free enzyme. Of the vast conformational space of the free enzyme, the enzyme conformations of the tightly bound enzyme-substrate complexes are the most important for catalysis. Therefore, functionalizing lead compounds to optimize their interactions with the enzyme's conformational ensemble bound to the substrate in the cis or the transition state could lead to more potent inhibitors.


Assuntos
Ciclofilina A/antagonistas & inibidores , Ciclofilina A/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Domínio Catalítico , Ciclofilina A/química , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica
11.
Mol Pharm ; 9(5): 1470-80, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22540277

RESUMO

We have previously shown that a novel microtubule-modulating noscapinoid, EM011 (9-Br-Nos), displays potent anticancer activity by inhibition of cellular proliferation and induction of apoptosis in prostate cancer cells and preclinical mice models. However, physicochemical and cellular barriers encumber the development of viable formulations for future clinical translation. To circumvent these limitations, we have synthesized EM011-cyclodextrin inclusion complexes to improve solubility and enhance therapeutic index of EM011. Phase solubility analysis indicated that EM011 formed a 1:1 stoichiometric complex with ß-CD and methyl-ß-CD, with a stability constant (K(c)) of 2.42 × 10(-3) M and 4.85 × 10(-3) M, respectively. Fourier transform infrared spectroscopy suggested the penetrance of either a O-CH(2) or OCH(3)-C(6)H(4)-OCH(3) moiety of EM011 in the ß-CD or methyl-ß-CD cavity. In addition, multifarious techniques, namely, differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, NMR spectroscopy, and computational studies validated the cage complex of EM011 with ß-CD and methyl-ß-CD. Moreover, rotating frame overhauser enhancement spectroscopy showed that the H(a) proton of the OCH(3)-C(6)H(4)-OCH(3) moiety was in close proximity with H3 proton of the ß-CD or methyl-ß-CD cavity. Furthermore, we found that the solubility of EM011 in phosphate buffer saline (pH 7.4) was enhanced by ~11 fold and ~21 fold upon complexation with ß-CD and methyl-ß-CD, respectively. The enhanced dissolution of the drug CD-complexes in aqueous phase remarkably decreased their IC(50) to 28.5 µM (9-Br-Nos-ß-CD) and 12.5 µM (9-Br-Nos-methyl-ß-CD) in PC-3 cells compared to free EM011 (~200 µM). This is the first report to demonstrate the novel construction of cylcodextrin-based nanosupramolecular vehicles for enhanced delivery of EM011 that warrants in vivo evaluation for the superior management of prostate cancer.


Assuntos
Ciclodextrinas/química , Noscapina/química , Noscapina/farmacologia , Neoplasias da Próstata/metabolismo , Varredura Diferencial de Calorimetria , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dioxóis/química , Dioxóis/uso terapêutico , Humanos , Isoquinolinas/química , Isoquinolinas/uso terapêutico , Espectroscopia de Ressonância Magnética , Masculino , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...