Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(2): 2844-2852, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459515

RESUMO

Enzyme-embedded polymer degradation was reported to be an attractive alternative approach to the conventional surface pouring method for efficient degradation of polymers using fungal-derived enzyme Candida antarctica lipase B. Despite the enormous potential, this approach is still in its infancy. In the present study, a probiotic lipase obtained from Lactobacillus plantarum has been employed for the first time to study the enzyme-embedded polymer degradation approach using poly(ε-caprolactone) (PCL) as the semicrystalline polymer candidate. PCL films embedded with 2 to 8 wt % lipase are studied under static conditions for their enzymatic degradation up to 8 days of incubation. Thermogravimetric analyses (TGA) have shown a clear trend in decreasing thermal stability of the polymer with increasing lipase content and number of incubation days. Differential thermal analyses have revealed that the percentage crystallinity of the leftover PCL films increases with progress in enzymatic degradation because of the efficient action of lipase over the amorphous regions of the films. Thus, the higher lipase loading in the PCL matrix and more number of incubation days have resulted in higher percentage crystallinity in the leftover PCL films, which has further been corroborated by X-ray diffraction analyses. In a similar line, higher percentage mass loss of the PCL films has been observed with increased enzyme loading and number of incubation days. Field emission scanning electron microscopy (FE-SEM) has been employed to follow the surface and cross-sectional morphologies of the polymer films, which has revealed micron-scale pores on the surface as well as a bulk polymer matrix with progress in enzymatic polymer degradation. Additionally, FE-SEM studies have revealed the efficient enzyme-catalyzed hydrolysis of the polymer matrix in a three-dimensional fashion, which is unique to this approach. In addition to the first-time utility of a probiotic lipase for the embedded polymer degradation approach, the present work provides insight into the PCL degradation under static and ambient temperature conditions with no replenishment of enzymes.

2.
Mikrochim Acta ; 186(8): 566, 2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31338605

RESUMO

The presence or absence and nature of the free patchy ends in DNA sequences has a decisive effect on the performance of colorimetric sensors based on the use of gold nanoparticles (Au NPs). The authors have designed two unmodified gene probes (probe 1: a 19-mer; probe 2: an 18-mer). They are complementary to either half of a 37-mer target derived from the conserved region of Hepatitis C Virus (HCV) RNA. Each probe has further been modified with 10-mer poly(A) and thiol-functionalized 10-mer poly(A) at the 5' positions. Nine combinations of probe and HCV RNA were then designed to investigate the effect of free patchy ends on the stability of citrate-modified Au NPs against salt-induced aggregation which lead to color change from red to blue. The aggregation of Au NPs can be monitored by ratiometric spectroscopy at wavelengths of 520 and 700 nm. The differentiation between HCV RNA and control has also been studied by varying the concentration of probe and analyte. The particle size and zeta potentials were determined before and after aggregation. It is demonstrated that the change in surface charge density of the Au NPs governs the critical coagulation concentration of NaCl. The method presented here can be used to quantify HCV RNA in the 370 nM to 3 µM concentration range, and the detection limit is 500 nM. The results obtained with Au NPs that are chemically non-conjugated with the oligonucleotides have been found to be valuable in rationally devising the design rules for rapid and efficient colorimetric sensing of oligonucleotides. Graphical abstract Schematic representation of the nine combinatorial pairs of oligonucleotides that vary in the length of patchy ends and their position to unearth their effect in rapid gold nanoparticle-based colorimetric gene sensing without time-consuming and expensive thiol-conjugation step.


Assuntos
Técnicas Biossensoriais/métodos , Colorimetria/métodos , Hepacivirus/genética , Nanopartículas Metálicas/química , RNA Viral/análise , DNA/metabolismo , DNA/farmacologia , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/farmacologia , Ouro/química , Tamanho da Partícula , Sondas RNA/química , Sondas RNA/metabolismo
3.
Sci Rep ; 9(1): 6603, 2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036893

RESUMO

Solvent-less synthesis of nanostructures is highly significant due to its economical, eco-friendly and industrially viable nature. Here we report a solid state synthetic approach for the fabrication of Fe3O4@M (where M = Au, Ag and Au-Ag alloy) core-shell nanostructures in nearly quantitative yields that involves a simple physical grinding of a metal precursor over Fe3O4 core, followed by calcination. The process involves smooth coating of low melting hybrid organic-inorganic precursor over the Fe3O4 core, which in turn facilitates a continuous shell layer post thermolysis. The obtained core-shell nanostructures are characterized using, XRD, XPS, ED-XRF, FE-SEM and HR-TEM for their phase, chemical state, elemental composition, surface morphology, and shell thickness, respectively. Homogeneous and continuous coating of the metal shell layer over a large area of the sample is ascertained by SAXS and STEM analyses. The synthesized catalysts have been studied for their applicability towards a model catalytic hydrogen generation from NH3BH3 and NaBH4 as hydrogen sources. The catalytic efficacy of the Fe3O4@Ag and Ag rich alloy shell materials are found to be superior to the corresponding Au counterparts. The saturation magnetization studies reveal the potential of the core-shell nanostructured catalysts to be magnetically recoverable and recyclable.

4.
RSC Adv ; 8(21): 11403-11411, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35542774

RESUMO

UV-nanoimprint lithography (UV-NIL) is a promising technique for direct fabrication of functional oxide nanostructures. Since it is mostly carried out in aerobic conditions, the free radical polymerization during imprinting is retarded due to the radical scavenging ability of oxygen. Therefore, it is highly desirable to have an oxygen-insensitive photo-curable resin that not only alleviates the requirement of inert conditions but also enables patterning without making substantial changes in the process. Here we demonstrate the formulation of metal-containing resins that employ oxygen-insensitive thiol-ene photo-click chemistry. Allyl acetoacetate (AAAc) has been used as a bifunctional monomer that, on one hand, chelates with the metal ion, and on the other hand, offers a reactive alkene group for polymerization. Pentaerythritol tetrakis(3-mercaptopropionate) (PETMP), a four-arm thiol derivative, is used as a crosslinker as well as an active component in the thiol-ene photo-click chemistry. The FT-IR analyses on the metal-free and metal-containing resin formulations revealed that the optimum ratio of alkene to thiol is 1 : 0.5 for an efficient photo-click chemistry. The thiol-ene photo-click chemistry has been successfully demonstrated for direct imprinting of oxides by employing TiO2 and Ta2O5 as candidate systems. The imprinted films of metal-containing resins were subjected to calcination to obtain the corresponding patterned metal oxides. This technique can potentially be expanded to other oxide systems as well.

5.
RSC Adv ; 8(55): 31358-31365, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35548221

RESUMO

The microbial resistance to different drugs due to excessive usage of antibiotics in various domains has become a serious environmental threat in recent years. This gave the impetus to researchers to find alternatives that do not lead to multi-drug resistant microbes. In this backdrop, silver nanoparticles (Ag NPs) have become a popular choice due to their potential broad spectrum of antimicrobial attributes. Recent literature caution that about 400 metric tons of Ag NPs are synthesized annually all over the world that could cause environmental hazards when used at higher concentrations than the toxicity limit. However, most of the literature reports use higher concentrations of Ag NPs and exposure to such concentrations may lead to environmental and health hazards. In this study, a series of Ag NPs have been synthesized using a lipase derived from a probiotic source Lactobacillus plantarum as the stabilizing agent. The Ag NPs synthesized through different combinations of lipase and AgNO3 are characterized using various techniques such as UV-visible spectroscopy, FT-IR, ED-XRF, DLS and HR-TEM. The lipase capped Ag NPs have been studied for their antimicrobial activity against representative microbes such as Pseudomonas putida, Staphylococcus aureus and Aspergillus niger. Our initial results reveal that the lipase capped Ag NPs possess high potential towards broad spectrum antimicrobial applications at concentrations much lower than the toxicity limit of the standard model, zebra fish.

6.
ACS Omega ; 2(8): 4494-4504, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457742

RESUMO

Palladium is one of the widely used precious metals toward catalysis, energy, and environmental applications. Efficient recovery and reusability of palladium from the spent catalysts is not only highly desirable for sustainable industrial processing but also for preventing environmental contamination. Here, we present a facile citrate-mediated amine functionalization of alumina nanopowder (AO) in aqueous medium. The surface functionalization is probed using infrared (IR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis, surface area, and zeta potential measurements. The amine-functionalized sorbent is thoroughly studied for its vital palladium-sorption parameters such as amount of adsorbent, pH, adsorption capacity, thermodynamics, and kinetics. The palladium adsorption over amine-functionalized AO is further characterized with X-ray diffraction and XPS. IR analysis of palladium adsorbed over polyethyleneimine is performed to elucidate the mechanistic insight on the role of nitrogen in capturing palladium. The amine-functionalized sorbent after adsorbing palladium is studied for the catalytic reduction of 4-nitrophenol and Cr(VI) and hydrogen generation from ammonia borane, which demonstrated its excellent catalytic activity and reusability toward energy and environmental applications. The environmentally benign materials and all-aqueous reactions employed in this work demonstrate the potential of the strategy for efficient and economical industrial transformations and waste-stream management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...