Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Open Bio ; 11(11): 3081-3089, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34535977

RESUMO

Free fatty acid receptor 4 (FFAR4)/GPR120 comprises a receptor for medium- and long-chain fatty acids. We previously identified phytosphingosine (PHS) as a novel ligand of FFAR4. Although many natural FFAR4 ligands have carboxyl groups, PHS does not, thus suggesting that binding to FFAR4 is driven by a completely different mechanism than other natural ligands such as α-linolenic acid (ALA). To test this hypothesis, we performed docking simulation analysis using a FFAR4 homology model based on a protein model derived from the crystal structure of activated turkey beta-1 adrenoceptor. The docking simulation revealed that the probable hydrogen bonds to FFAR4 differ between various ligands. In particular, binding was predicted between R264 of the FFAR4 and the oxygen of the carboxylate group in ALA, as well as between E249 of the FFAR4 and the oxygen of the hydroxy group at the C4-position in PHS. Alanine substitution at E249 (E249A) dramatically reduced PHS-induced FFAR4 activation but demonstrated a weaker effect on ALA-induced FFAR4 activation. Kinetic analysis and Km values clearly demonstrated that the E249A substitution resulted in reduced affinity for PHS but not for ALA. Additionally, we observed that sphingosine, lacking a hydroxyl group at C4-position, could not activate FFAR4. Our data show that E249 of the FFAR4 receptor is crucial for binding to the hydroxy group at the C4-position in PHS, and this is a completely different molecular mechanism of binding from ALA. Because GPR120 agonists have attracted attention as treatments for type 2 diabetes, our findings may provide new insights into their development.


Assuntos
Esfingosina/análogos & derivados , Esfingosina/metabolismo , Comunicação Celular , Ácidos Graxos , Células HEK293 , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular/métodos , Ligação Proteica , Receptores Acoplados a Proteínas G , Esfingosina/fisiologia
2.
Food Funct ; 11(12): 10534-10541, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185223

RESUMO

Post-fermented teas, produced by microbial fermentation, are attracting attention due to their health benefits that reduce the risk of hyperlipidemia and atherosclerosis. Although several novel polyphenols have been identified from post-fermented teas, their biological activities have not yet been fully elucidated. In this study, we found that teadenol A, a polyphenol recently isolated from Japanese post-fermented tea, acts as a novel ligand on a long-chain fatty acid receptor, GPR120. Teadenol A activated GPR120 was over-expressed in 293T cells, and this activation was inhibited by the GPR120 antagonist AH7614. Additionally, teadenol A induced Erk1/2 phosphorylation and increased the intracellular Ca2+ concentration in 293T cells, and these effects were completely dependent on GPR120 expression. Our results suggest that teadenol A binds and activates GPR120 directly. Furthermore, teadenol A enhanced the secretion of GLP-1 from intestinal endocrine STC-1 cells. GLP-1 suppresses appetite and increases insulin secretion, exhibiting anti-diabetic effects. GPR120/GLP-1 signaling is attracting attention as a potential target for pharmaceuticals against type 2 diabetes. Our results suggest that teadenol A is a key molecule in post-fermented tea responsible for beneficial effects on metabolic syndrome.


Assuntos
Secreções Corporais , Alimentos Fermentados , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Chá , Diabetes Mellitus Tipo 2 , Ácidos Graxos , Fermentação , Alimentos Fermentados/microbiologia , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
3.
J Biochem ; 164(1): 27-32, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29373685

RESUMO

GPR120 is a receptor for long chain fatty acids and is expressed in small intestinal endocrine cells, L cells and adipose tissue. Activation of GPR120 promotes the secretion of incretin GLP-1, which is known to have effects on anti-metabolic syndrome. As such, GPR120 is a potential target of pharmaceuticals for type II diabetes. In this study, we performed ligand-screening for GPR120 on glycero- and sphingo-type lipids and their derivatives using a Transforming Growth Factor α-shedding assay. We found that phytosphingosine (PHS) activates GPR120 in a manner comparable to the natural ligand α-linolenic acid (ALA) and superior to that of the synthetic ligand GW9508. The IC50 value of PHS was 33.4 µM, of ALA was 31.0 µM and of GW9508 was 41.7 µM. Additionally, PHS-induced activation of GPR120 was inhibited by the specific antagonist AH7614. Many of the natural or synthetic ligands found thus far are compounds with carboxyl groups. However, PHS does not possess a carboxyl group, suggesting that its manner of interaction with GPR120 may be significantly different from that of other ligands. Since PHS is rich in the plasma membrane of yeast, our results imply that PHS found in fermented food could have effects on anti-diabetes through activation of GPR120.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Esfingosina/análogos & derivados , Células Cultivadas , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Ligantes , Conformação Molecular , Esfingosina/farmacologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...