Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Metab ; 37(3): 467-474, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30187276

RESUMO

The central nervous system in adult mammals does not heal spontaneously after spinal cord injury (SCI). However, SCI treatment has been improved recently following the development of cell transplantation therapy. We recently reported that fibroblast growth factor (FGF) 2-pretreated human dental pulp cells (hDPCs) can improve recovery in a rat model of SCI. This study aimed to investigate mechanisms underlying the curative effect of SCI enhanced via FGF2 pretreatment; we selected three hDPC lines upon screening for the presence of mesenchymal stem cell markers and of their functionality in a rat model of SCI, as assessed using the Basso, Beattie, and Bresnahan score of locomotor functional scale, electrophysiological tests, and morphological analyses. We identified FGF2-responsive genes via gene expression analyses in these lines. FGF2 treatment upregulated GABRB1, MMP1, and DRD2, which suggested to contribute to SCI or central the nervous system. In an expanded screening of additional lines, GABRB1 displayed rather unique and interesting behavior; two lines with the lowest sensitivity of GABRB1 to FGF2 treatment displayed an extremely minor effect in the SCI model. These findings provide insights into the role of FGF2-responsive genes, especially GABRB1, in recovery from SCI, using hDPCs treated with FGF2.


Assuntos
Polpa Dentária/citologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Animais , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Humanos , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/fisiopatologia
2.
Sci Rep ; 7(1): 13500, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044129

RESUMO

Human dental pulp cells (DPCs), adherent cells derived from dental pulp tissues, are potential tools for cell transplantation therapy. However, little work has been done to optimize such transplantation. In this study, DPCs were treated with fibroblast growth factor-2 (FGF2) for 5-6 consecutive serial passages and were transplanted into the injury site immediately after complete transection of the rat spinal cord. FGF2 priming facilitated the DPCs to promote axonal regeneration and to improve locomotor function in the rat with spinal cord injury (SCI). Additional analyses revealed that FGF2 priming protected cultured DPCs from hydrogen-peroxide-induced cell death and increased the number of DPCs in the SCI rat spinal cord even 7 weeks after transplantation. The production of major neurotrophic factors was equivalent in FGF2-treated and untreated DPCs. These observations suggest that FGF2 priming might protect DPCs from the post-trauma microenvironment in which DPCs infiltrate and resident immune cells generate cytotoxic reactive oxygen species. Surviving DPCs could increase the availability of neurotrophic factors in the lesion site, thereby promoting axonal regeneration and locomotor function recovery.


Assuntos
Polpa Dentária/citologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Transplante de Células-Tronco Mesenquimais/métodos , Regeneração Nervosa , Traumatismos da Medula Espinal/terapia , Animais , Orientação de Axônios , Células Cultivadas , Feminino , Humanos , Locomoção , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...