Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 146(13)2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31118231

RESUMO

Asymmetric cell division is a key step in cellular differentiation in multicellular organisms. In plants, asymmetric zygotic division produces the apical and basal cells. The mitogen-activated protein kinase (MPK) cascade in Arabidopsis acts in asymmetric divisions such as zygotic division and stomatal development, but whether the effect on cellular differentiation of this cascade is direct or indirect following asymmetric division is not clear. Here, we report the analysis of a rice mutant, globular embryo 4 (gle4). In two- and four-cell-stage embryos, asymmetric zygotic division and subsequent cell division patterns were indistinguishable between the wild type and gle4 mutants. However, marker gene expression and transcriptome analyses showed that specification of the basal region was compromised in gle4 We found that GLE4 encodes MPK6 and that GLE4/MPK6 is essential in cellular differentiation rather than in asymmetric zygotic division. Our findings provide a new insight into the role of MPK in plant development. We propose that the regulation of asymmetric zygotic division is separate from the regulation of cellular differentiation that leads to apical-basal polarity.


Assuntos
Divisão Celular Assimétrica/genética , Proteína Quinase 6 Ativada por Mitógeno/fisiologia , Oryza , Zigoto/citologia , Divisão Celular/genética , Clonagem Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteína Quinase 6 Ativada por Mitógeno/genética , Oryza/embriologia , Oryza/enzimologia , Oryza/genética , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/metabolismo
2.
Development ; 143(18): 3407-16, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27578792

RESUMO

Juvenile-to-adult phase transition is an important shift for the acquisition of adult vegetative characteristics and subsequent reproductive competence. We identified a recessive precocious (pre) mutant exhibiting a long leaf phenotype in rice. The long leaf phenotype is conspicuous in the second to the fourth leaves, which are juvenile and juvenile-to-adult transition leaves. We found that morphological and physiological traits, such as midrib formation, shoot meristem size, photosynthetic rate and plastochron, in juvenile and juvenile-to-adult transition stages of the pre mutant have precociously acquired adult characteristics. In agreement with these results, expression patterns of miR156 and miR172, which are microRNAs regulating phase change, support the accelerated juvenile-to-adult phase change in the pre mutant. The mutated gene encodes an allene oxide synthase (OsAOS1), which is a key enzyme for the biosynthesis of jasmonic acid (JA). The pre mutant showed a low level of JA and enhanced sensitivity to gibberellic acid, which promotes the phase change in some plant species. We also show that prolonged plastochron in the pre mutant is caused by accelerated PLASTOCHRON1 (PLA1) function. The present study reveals a substantial role of JA as a negative regulator of vegetative phase change.


Assuntos
Ciclopentanos/metabolismo , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/genética , Proteínas de Plantas/genética
3.
Plant J ; 81(1): 1-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25327517

RESUMO

The endosperm of cereal grains represents the most important source of human nutrition. In addition, the endosperm provides many investigatory opportunities for biologists because of the unique processes that occur during its ontogeny, including syncytial development at early stages. Rice endospermless 1 (enl1) develops seeds lacking an endosperm but carrying a functional embryo. The enl1 endosperm produces strikingly enlarged amoeboid nuclei. These abnormal nuclei result from a malfunction in mitotic chromosomal segregation during syncytial endosperm development. The molecular identification of the causal gene revealed that ENL1 encodes an SNF2 helicase family protein that is orthologous to human Plk1-Interacting Checkpoint Helicase (PICH), which has been implicated in the resolution of persistent DNA catenation during anaphase. ENL1-Venus (enhanced yellow fluorescent protein (YFP)) localizes to the cytoplasm during interphase but moves to the chromosome arms during mitosis. ENL1-Venus is also detected on a thread-like structure that connects separating sister chromosomes. These observations indicate the functional conservation between PICH and ENL1 and confirm the proposed role of PICH. Although ENL1 dysfunction also affects karyokinesis in the root meristem, enl1 plants can grow in a field and set seeds, indicating that its indispensability is tissue-dependent. Notably, despite the wide conservation of ENL1/PICH among eukaryotes, the loss of function of the ENL1 ortholog in Arabidopsis (CHR24) has only marginal effects on endosperm nuclei and results in normal plant development. Our results suggest that ENL1 is endowed with an indispensable role to secure the extremely rapid nuclear cycle during syncytial endosperm development in rice.


Assuntos
DNA Helicases/fisiologia , Endosperma/crescimento & desenvolvimento , Oryza/enzimologia , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Segregação de Cromossomos , DNA Helicases/genética , DNA Helicases/metabolismo , Endosperma/enzimologia , Endosperma/genética , Mitose , Dados de Sequência Molecular , Mutação , Oryza/embriologia , Oryza/crescimento & desenvolvimento , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
4.
Plant J ; 78(6): 927-36, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24654985

RESUMO

Auxin is a fundamental plant hormone and its localization within organs plays pivotal roles in plant growth and development. Analysis of many Arabidopsis mutants that were defective in auxin biosynthesis revealed that the indole-3-pyruvic acid (IPA) pathway, catalyzed by the TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) families, is the major biosynthetic pathway of indole-3-acetic acid (IAA). In contrast, little information is known about the molecular mechanisms of auxin biosynthesis in rice. In this study, we identified a auxin-related rice mutant, fish bone (fib). FIB encodes an orthologue of TAA genes and loss of FIB function resulted in pleiotropic abnormal phenotypes, such as small leaves with large lamina joint angles, abnormal vascular development, small panicles, abnormal organ identity and defects in root development, together with a reduction in internal IAA levels. Moreover, we found that auxin sensitivity and polar transport activity were altered in the fib mutant. From these results, we suggest that FIB plays a pivotal role in IAA biosynthesis in rice and that auxin biosynthesis, transport and sensitivity are closely interrelated.


Assuntos
Ácidos Indolacéticos/metabolismo , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Triptofano Transaminase/fisiologia , Sequência de Aminoácidos , Transporte Biológico/genética , Clonagem Molecular , Dados de Sequência Molecular , Oryza/enzimologia , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de Proteína , Triptofano Transaminase/química , Triptofano Transaminase/genética
5.
Planta ; 238(1): 229-37, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23686337

RESUMO

Juvenile-to-adult phase change is an indispensable event which guarantees a successful life cycle. Phase change has been studied in maize, Arabidopsis and rice, but is mostly unknown in other species. Soybean/Fabaceae plants undergo drastic changes of shoot architecture at the early vegetative stage including phyllotactic change and leaf type alteration from simple to compound. These characteristics make soybean/Fabaceae plants an interesting taxon for investigating vegetative phase change. Following the expansion of two cotyledons, two simple leaves simultaneously emerge in opposite phyllotaxy. The phyllotaxy of the third and fourth leaves is not fixed; both opposite and distichous phyllotaxis are observed within the same population. Leaves were compound from the third leaf. But the third leaf was rarely simple. Morphological and quantitative changes in early vegetative phase were recognized in leaf size, leaf shape, number of trichomes, stipule size and shape, and shoot meristem shape. Two microRNA genes, miR156 and miR172, are known to be associated with vegetative phase change. Examination of the expression level revealed that miR156 expression was high in the first two leaves and subsequently down-regulated, and that of miR172 showed the inverse expression pattern. These expression patterns coincided with the case of other species. Taken all data together, the first and second leaves represent juvenile phase, the fifth and upper leaves adult phase, and the third and fourth leaves intermediate stage. Further investigation of soybean phase change would give fruitful understandings on plant development.


Assuntos
Glycine max/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Flores , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , MicroRNAs , Fotossíntese , Folhas de Planta/fisiologia , Brotos de Planta/anatomia & histologia , Fatores de Tempo
6.
Plant J ; 75(4): 592-605, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23621326

RESUMO

Among angiosperms there is a high degree of variation in embryo/endosperm size in mature seeds. However, little is known about the molecular mechanism underlying size control between these neighboring tissues. Here we report the rice GIANT EMBRYO (GE) gene that is essential for controlling the size balance. The function of GE in each tissue is distinct, controlling cell size in the embryo and cell death in the endosperm. GE, which encodes CYP78A13, is predominantly expressed in the interfacing tissues of the both embryo and endosperm. GE expression is under negative feedback regulation; endogenous GE expression is upregulated in ge mutants. In contrast to the loss-of-function mutant with large embryo and small endosperm, GE overexpression causes a small embryo and enlarged endosperm. A complementation analysis coupled with heterofertilization showed that complementation of ge mutation in either embryo or endosperm failed to restore the wild-type embryo/endosperm ratio. Thus, embryo and endosperm interact in determining embryo/endosperm size balance. Among genes associated with embryo/endosperm size, REDUCED EMBRYO genes, whose loss-of-function causes a phenotype opposite to ge, are revealed to regulate endosperm size upstream of GE. To fully understand the embryo-endosperm size control, the genetic network of the related genes should be elucidated.


Assuntos
Endosperma/genética , Regulação da Expressão Gênica no Desenvolvimento , Oryza/genética , Proteínas de Plantas/genética , Alelos , Sequência de Aminoácidos , Mapeamento Cromossômico , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Endosperma/citologia , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Genótipo , Dados de Sequência Molecular , Mutação , Especificidade de Órgãos , Oryza/citologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Fenótipo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/citologia , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Alinhamento de Sequência , Regulação para Cima
7.
J Exp Bot ; 64(7): 2049-61, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23519729

RESUMO

Cellulose synthase-like (CSL) genes are predicted to catalyse the biosynthesis of non-cellulosic polysaccharides such as the ß-D-glycan backbone of hemicelluloses and are classified into nine subfamilies (CSLA-CSLH and CSLJ). The CSLD subfamily is conserved in all land plants, and among the nine CSL subfamilies, it shows the highest sequence similarity to the cellulose synthase genes, suggesting that it plays fundamental roles in plant development. This study presents a detailed analysis of slender leaf 1 (sle1) mutants of rice that showed rolled and narrow leaf blades and a reduction in plant height. The narrow leaf blade of sle1 was caused by reduced cell proliferation beginning at the P3 primordial stage. In addition to the size reduction of organs, sle1 mutants exhibited serious developmental defects in pollen formation, anther dehiscence, stomata formation, and cell arrangement in various tissues. Map-based cloning revealed that SLE1 encodes the OsCSLD4 protein, which was identified previously from a narrow leaf and dwarf 1 mutant. In situ hybridization experiments showed that OsCSLD4 was expressed in a patchy pattern in developing organs. Double-target in situ hybridization and quantitative RT-PCR analyses revealed that SLE1 was expressed specifically during the M-phase of the cell cycle, and suggested that the cell-cycle regulation was altered in sle1 mutants. These results suggest that the OsCSLD4 protein plays a pivotal role in the M phase to regulate cell proliferation. Further study of OsCSLD4 is expected to yield new insight into the role of hemicelluloses in plant development.


Assuntos
Divisão Celular/genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Oryza/citologia , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células , Proteínas de Plantas/genética
8.
PLoS Genet ; 8(9): e1002953, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23028360

RESUMO

RNA silencing is a defense system against "genomic parasites" such as transposable elements (TE), which are potentially harmful to host genomes. In plants, transcripts from TEs induce production of double-stranded RNAs (dsRNAs) and are processed into small RNAs (small interfering RNAs, siRNAs) that suppress TEs by RNA-directed DNA methylation. Thus, the majority of TEs are epigenetically silenced. On the other hand, most of the eukaryotic genome is composed of TEs and their remnants, suggesting that TEs have evolved countermeasures against host-mediated silencing. Under some circumstances, TEs can become active and increase in copy number. Knowledge is accumulating on the mechanisms of TE silencing by the host; however, the mechanisms by which TEs counteract silencing are poorly understood. Here, we show that a class of TEs in rice produces a microRNA (miRNA) to suppress host silencing. Members of the microRNA820 (miR820) gene family are located within CACTA DNA transposons in rice and target a de novo DNA methyltransferase gene, OsDRM2, one of the components of epigenetic silencing. We confirmed that miR820 negatively regulates the expression of OsDRM2. In addition, we found that expression levels of various TEs are increased quite sensitively in response to decreased OsDRM2 expression and DNA methylation at TE loci. Furthermore, we found that the nucleotide sequence of miR820 and its recognition site within the target gene in some Oryza species have co-evolved to maintain their base-pairing ability. The co-evolution of these sequences provides evidence for the functionality of this regulation. Our results demonstrate how parasitic elements in the genome escape the host's defense machinery. Furthermore, our analysis of the regulation of OsDRM2 by miR820 sheds light on the action of transposon-derived small RNAs, not only as a defense mechanism for host genomes but also as a regulator of interactions between hosts and their parasitic elements.


Assuntos
Elementos de DNA Transponíveis/genética , Interações Hospedeiro-Parasita/genética , MicroRNAs , Oryza/genética , RNA Interferente Pequeno/genética , Metilação de DNA/genética , Repressão Epigenética , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genoma de Planta , Sequências Repetitivas Dispersas/genética , MicroRNAs/genética , MicroRNAs/metabolismo
9.
Plant J ; 72(6): 869-81, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22889403

RESUMO

Phyllotaxy is defined as the spatial arrangement of leaves on the stem. The mechanism responsible for this extremely regular pattern is one of the most fascinating enigmas in plant biology. In this study, we identified a gene regulating the phyllotactic pattern in rice. Loss-of-function mutants of the DECUSSATE (DEC) gene displayed a phyllotactic conversion from normal distichous pattern to decussate. The dec mutants had an enlarged shoot apical meristem with enhanced cell division activity. In contrast to the shoot apical meristem, the size of the root apical meristem in the dec mutants was reduced, and cell division activity was suppressed. These phenotypes indicate that DEC has opposite functions in the shoot apical meristem and root apical meristem. Map-based cloning revealed that DEC encodes a plant-specific protein containing a glutamine-rich region and a conserved motif. Although its molecular function is unclear, the conserved domain is shared with fungi and animals. Expression analysis showed that several type A response regulator genes that act in the cytokinin signaling pathway were down-regulated in the dec mutant. In addition, dec seedlings showed a reduced responsiveness to exogenous cytokinin. Our results suggest that DEC controls the phyllotactic pattern by affecting cytokinin signaling in rice.


Assuntos
Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Divisão Celular , Regulação para Baixo , Perfilação da Expressão Gênica , Glutamina , Meristema/anatomia & histologia , Meristema/genética , Meristema/fisiologia , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/anatomia & histologia , Oryza/fisiologia , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/fisiologia , Plantas Geneticamente Modificadas , Plântula/anatomia & histologia , Plântula/genética , Plântula/fisiologia , Alinhamento de Sequência
10.
Theor Appl Genet ; 125(7): 1463-71, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22772589

RESUMO

Most of the maize kernel oil is located in the embryo while the majority of starch is located in the endosperm. Maize kernel composition and value are affected significantly by the ratio of the embryo size to the endosperm size; however, the genetic regulation of embryo to endosperm ratio (EER) in maize is unknown. Here we identified ZmGE2 gene, which encodes a cytochrome p450 protein, as a gene associated with EER variation in maize. We first expressed rice Giant Embryo (GE) gene driven by oleosin promoter in maize and detected a 23.2 % reduction in EER in transgenic seeds, demonstrating the existence of evolutionarily conserved mechanisms for EER determination in rice and maize. We next identified maize GE2, a homolog of rice GE sharing 70 % identity in amino sequence, as a candidate based on the similar expression pattern and co-localization with a previously detected QTL for EER. Followed by linkage and association mapping, a 247-bp transposable element (TE) insertion in 3'-untranslated region of ZmGE2 gene was identified to be associated with increase in EER and kernel oil content. Expression level of the favorable ZmGE2 allele containing the 247-bp TE insertion was strongly reduced. In addition, the 247-bp TE insertion site was a selection target during the artificial long-term selection for the high EER trait in a high oil population. This is the first report that demonstrates an association of ZmGE2 with EER variation in maize and identifies ZmGE2 gene as a promising target for manipulation of EER and grain composition by either transgenic approach or molecular breeding in maize.


Assuntos
Elementos de DNA Transponíveis/genética , Endosperma/genética , Genes de Plantas/genética , Estudos de Associação Genética , Mutagênese Insercional/genética , Zea mays/anatomia & histologia , Zea mays/genética , Alelos , Mapeamento Cromossômico , Cruzamentos Genéticos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Frequência do Gene/genética , Endogamia , Dados de Sequência Molecular , Oryza/genética , Filogenia , Óleos de Plantas/metabolismo , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos
11.
Planta ; 235(5): 1081-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22476293

RESUMO

Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.


Assuntos
Genes de Plantas/genética , Giberelinas/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/genética , Folhas de Planta/crescimento & desenvolvimento , Inibidores Enzimáticos/metabolismo , Regulação da Expressão Gênica de Plantas , Variação Genética , Genótipo , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Plântula/crescimento & desenvolvimento , Transdução de Sinais , Triazóis/metabolismo
12.
Plant Signal Behav ; 7(1): 50-2, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22301968

RESUMO

The rice peter pan syndrome-1 (pps-1) mutant shows a prolonged juvenile phase and early flowering. Although the early vegetative phase and flowering time of pps-1 have been closely examined, the phenotypes in the late vegetative and reproductive phases are not yet well understood. In the ninth leaf blade of pps-1, the relative length of the midrib was comparable to the sixth leaf blade of wild-type. Moreover, pps-1 had a small inflorescence meristem and small panicles. These phenotypes indicate that in pps-1 the juvenile phase coexists with the late vegetative phase, resulting in small panicles. Gibberellin is known to promote the juvenile-adult phase transition. d18-k is dwarf and has a prolonged juvenile phase. Double mutant (d18-k pps-1) showed the same phenotype as the pps-1, indicating that PPS is upstream of GA biosynthetic genes.


Assuntos
Oryza/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Oryza/genética , Fenótipo , Folhas de Planta/crescimento & desenvolvimento
13.
Plant J ; 69(1): 168-80, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21910771

RESUMO

The temporal and spatial control of meristem identity is a key element in plant development. To better understand the molecular mechanisms that regulate inflorescence and flower architecture, we characterized the rice aberrant panicle organization 2 (apo2) mutant which exhibits small panicles with reduced number of primary branches due to the precocious formation of spikelet meristems. The apo2 mutants also display a shortened plastochron in the vegetative phase, late flowering, aberrant floral organ identities and loss of floral meristem determinacy. Map-based cloning revealed that APO2 is identical to previously reported RFL gene, the rice ortholog of the Arabidopsis LEAFY (LFY) gene. Further analysis indicated that APO2/RFL and APO1, the rice ortholog of Arabidopsis UNUSUAL FLORAL ORGANS, act cooperatively to control inflorescence and flower development. The present study revealed functional differences between APO2/RFL and LFY. In particular, APO2/RFL and LFY act oppositely on inflorescence development. Therefore, the genetic mechanisms for controlling inflorescence architecture have evolutionarily diverged between rice (monocots) and Arabidopsis (eudicots).


Assuntos
Proteínas de Arabidopsis/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/genética , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Clonagem Molecular , Flores/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inflorescência , Mutação , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
14.
Plant Cell Physiol ; 53(1): 213-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22123790

RESUMO

Widespread soil contamination with heavy metals has fostered the need for plant breeders to develop new crops that do not accumulate heavy metals. Metal-transporting transmembrane proteins that transport heavy metals across the plant plasma membrane are key targets for developing these new crops. Oryza sativa heavy metal ATPase 3 (OsHMA3) is known to be a useful gene for limiting cadmium (Cd) accumulation in rice. OsHMA2 is a close homolog of OsHMA3, but the function of OsHMA2 is unknown. To gain insight into the function of OsHMA2, we analyzed three Tos17 insertion mutants. The translocation ratios of zinc (Zn) and Cd were clearly lower in all mutants than in the wild type, suggesting that OsHMA2 is a major transporter of Zn and Cd from roots to shoots. By comparing each allele in the OsHMA2 protein structure and measuring the Cd translocation ratio, we identified the C-terminal region as essential for Cd translocation into shoots. Two alleles were identified as good material for breeding rice that does not contain Cd in the grain but does contain some Zn, and that grows normally.


Assuntos
Adenosina Trifosfatases/metabolismo , Cádmio/metabolismo , Mutação/genética , Oryza/enzimologia , Oryza/genética , Proteínas de Plantas/metabolismo , Zinco/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Bioensaio , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional/genética , Especificidade de Órgãos/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Retroelementos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares/enzimologia
15.
J Exp Bot ; 62(14): 4719-30, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21914655

RESUMO

The flower of rice diverged from those of model eudicot species such as Arabidopsis, Antirrhinum, or Petunia, and is thus of great interest in developmental and evolutionary biology. Specific to grass species, including rice, are the structural units of the inflorescence called the spikelet and floret, which comprise grass-specific peripheral organs and conserved sexual organs. Recent advances in molecular genetic studies have provided an understanding of the functions of rapidly increasing numbers of genes involved in rice flower development. The genetic framework of rice flower development is in part similar to that of model eudicots. However, rice also probably recruits specific genetic mechanisms, which probably contribute to the establishment of the specific floral architecture of rice. In this review, the molecular genetic mechanisms of rice flowering are outlined, focusing on recent information and in comparison with those of model eudicots.


Assuntos
Flores/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
Plant Cell ; 23(6): 2143-54, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21705640

RESUMO

Because plant reproductive development occurs only in adult plants, the juvenile-to-adult phase change is an indispensable part of the plant life cycle. We identified two allelic mutants, peter pan syndrome-1 (pps-1) and pps-2, that prolong the juvenile phase in rice (Oryza sativa) and showed that rice PPS is an ortholog of Arabidopsis thaliana CONSTITUTIVE PHOTOMORPHOGENIC1. The pps-1 mutant exhibits delayed expression of miR156 and miR172 and the suppression of GA biosynthetic genes, reducing the GA(3) content in this mutant. In spite of its prolonged juvenile phase, the pps-1 mutant flowers early, and this is associated with derepression of RAP1B expression in pps-1 plants independently of the Hd1-Hd3a/RFT1 photoperiodic pathway. PPS is strongly expressed in the fourth and fifth leaves, suggesting that it regulates the onset of the adult phase downstream of MORI1 and upstream of miR156 and miR172. Its ability to regulate the vegetative phase change and the time of flowering suggests that rice PPS acquired novel functions during the evolution of rice/monocots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Reprodução Assexuada/fisiologia , Proteínas de Arabidopsis/genética , Relógios Circadianos/genética , Escuridão , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Mutação , Oryza/anatomia & histologia , Oryza/genética , Fenótipo , Fotoperíodo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligases
17.
Dev Biol ; 351(1): 208-16, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21146515

RESUMO

The floral meristem is the homeostatic source of floral organs in angiosperms. In rice, after stamen and carpel differentiation, the floral meristem is terminated and exhausted to produce an ovule. To elucidate underlying mechanisms controlling the continuous process from floral meristem termination to ovule formation, we investigated two rice mutants showing abnormalities in ovule formation. In the weak mutant of the lonely guy gene, responsible for cytokinin activation to maintain the floral meristem, ovule formation was abolished inside the normally developing carpel. The loss-of-function of the OsMADS13 gene, encoding a MADS-box transcription factor, resulted in the replacement of ovule with extra carpels. The in situ expression of tissue-specific markers in both mutants revealed that a lateral region of the terminating floral meristem adjacent to the site of carpel initiation exclusively differentiated the ovule and is apparently distinct from the remainder of the floral meristem, in contrast to previous assumptions. Our findings also suggest that primordial germ cells are initiated independently of ovule formation, but dependently on the presence of active cytokinin. We propose a novel pattern of ovule formation in angiosperms, in which the ovule is a lateral organ finally differentiated from the terminating floral meristem in rice.


Assuntos
Diferenciação Celular , Flores/embriologia , Meristema/embriologia , Oryza/embriologia , Óvulo Vegetal/citologia , Flores/citologia , Proteínas de Homeodomínio/fisiologia , Organogênese , Oryza/citologia , Proteínas de Plantas/fisiologia , Transativadores/fisiologia
18.
Plant Physiol ; 154(3): 1335-46, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20805329

RESUMO

In rice (Oryza sativa), trans-acting small interfering RNA (ta-siRNA) is essential for shoot development, including shoot apical meristem (SAM) formation and leaf morphogenesis. The rice wavy leaf1 (waf1) mutant has been identified as an embryonic mutant resembling shoot organization1 (sho1) and sho2, homologs of a loss-of-function mutant of DICER-LIKE4 and a hypomorphic mutant of ARGONAUTE7, respectively, which both act in the ta-siRNA production pathway. About half of the waf1 mutants showed seedling lethality due to defects in SAM maintenance, but the rest survived to the reproductive phase and exhibited pleiotropic phenotypes in leaf morphology and floral development. Map-based cloning of WAF1 revealed that it encodes an RNA methyltransferase, a homolog of Arabidopsis (Arabidopsis thaliana) HUA ENHANCER1. The reduced accumulation of small RNAs in waf1 indicated that the stability of the small RNA was decreased. Despite the greatly reduced level of microRNAs and ta-siRNA, microarray and reverse transcription-polymerase chain reaction experiments revealed that the expression levels of their target genes were not always enhanced. A double mutant between sho and waf1 showed an enhanced SAM defect, suggesting that the amount and/or quality of ta-siRNA is crucial for SAM maintenance. Our results indicate that stabilization of small RNAs by WAF1 is indispensable for rice development, especially for SAM maintenance and leaf morphogenesis governed by the ta-siRNA pathway. In addition, the inconsistent relationship between the amount of small RNAs and the level of the target mRNA in waf1 suggest that there is a complex regulatory mechanism that modifies the effects of microRNA/ta-siRNA on the expression of the target gene.


Assuntos
MicroRNAs/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , RNA Interferente Pequeno/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/genética , RNA de Plantas/metabolismo
19.
Plant Cell Environ ; 33(5): 687-701, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-19930131

RESUMO

An apoplastic pathway, the so-called bypass flow, is important for Na+ uptake in rice (Oryza sativa L.) under saline conditions; however, the precise site of entry is not yet known. We report the results of our test of the hypothesis that bypass flow of Na+ in rice occurs at the site where lateral roots emerge from the main roots. We investigated Na+ uptake and bypass flow in lateral rootless mutants (lrt1, lrt2), a crown rootless mutant (crl1), their wild types (Oochikara, Nipponbare and Taichung 65, respectively) and in seedlings of rice cv. IR36. The results showed that shoot Na+ concentration in lrt1, lrt2 and crl1 was lower (by 20-23%) than that of their wild types. In contrast, the bypass flow quantified using trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS) was significantly increased in the mutants, from an average of 1.1% in the wild types to 3.2% in the mutants. Similarly, bypass flow in shoots of IR36 where the number of lateral and crown roots had been reduced through physical and hormonal manipulations was dramatically increased (from 5.6 to 12.5%) as compared to the controls. The results suggest that the path of bypass flow in rice is not at the sites of lateral root emergence.


Assuntos
Oryza/fisiologia , Raízes de Plantas/anatomia & histologia , Sódio/metabolismo , Transporte Biológico , Mutação , Oryza/genética , Floema/química , Brotos de Planta/metabolismo , Brotos de Planta/fisiologia , Transpiração Vegetal , Pirenos/metabolismo , Plântula/anatomia & histologia , Plântula/fisiologia , Sódio/fisiologia , Ácidos Sulfônicos/metabolismo
20.
Plant Cell ; 21(10): 3008-25, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19820190

RESUMO

Floral organ identity and meristem determinacy in plants are controlled by combinations of activities mediated by MADS box genes. AGAMOUS-LIKE6 (AGL6)-like genes are MADS box genes expressed in floral tissues, but their biological functions are mostly unknown. Here, we describe an AGL6-like gene in rice (Oryza sativa), MOSAIC FLORAL ORGANS1 (MFO1/MADS6), that regulates floral organ identity and floral meristem determinacy. In the flower of mfo1 mutants, the identities of palea and lodicule are disturbed, and mosaic organs were observed. Furthermore, the determinacy of the floral meristem was lost, and extra carpels or spikelets developed in mfo1 florets. The expression patterns of floral MADS box genes were disturbed in the mutant florets. Suppression of another rice AGL6-like gene, MADS17, caused no morphological abnormalities in the wild-type background, but it enhanced the phenotype in the mfo1 background, indicating that MADS17 has a minor but redundant function with that of MFO1. Whereas single mutants in either MFO1 or the SEPALLATA-like gene LHS1 showed moderate phenotypes, the mfo1 lhs1 double mutant showed a severe phenotype, including the loss of spikelet meristem determinacy. We propose that rice AGL6-like genes help to control floral organ identity and the establishment and determinacy of the floral meristem redundantly with LHS1.


Assuntos
Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/metabolismo , Meristema/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Hibridização In Situ , Proteínas de Domínio MADS/genética , Meristema/citologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Dados de Sequência Molecular , Oryza/citologia , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA