Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 12843, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35902676

RESUMO

In the present study, a method for the synthesis of gelatin-stabilized copper oxide nanoparticles was developed. Synthesis was carried out by direct chemical precipitation. Copper sulfate, chloride, and acetate were used as precursors for the copper oxide synthesis. Gelatin was used as a stabilizer. It was found that the formation of monophase copper oxide II only occurred when copper acetate was used as a precursor. Our results showed that particles of the smallest diameter are formed in an aqueous medium (18 ± 6 nm), and those of th largest diameter-in an isobutanol medium (370 ± 131 nm). According to the photon correlation spectroscopy data, copper oxide nanoparticles synthesized in an aqueous medium were highly stable and had a monomodal size distribution with an average hydrodynamic radius of 61 nm. The study of the pH effect on the colloidal stability of copper oxide nanoparticles showed that the sample was stable in the pH range of 6.8 to 11.98. A possible mechanism for the pH influence on the stability of copper oxide nanoparticles is described. The effect of the ionic strength of the solution on the stability of the CuO nanoparticles sol was also studied, and the results showed that Ca2+ ions had the greatest effect on the sample stability. IR spectroscopy showed that the interaction of CuO nanoparticles with gelatin occurred through the hydroxyl group. It was found that CuO nanoparticles stabilized with gelatin have a fungicidal activity at concentration equivalent 2.5 · 10-3 mol/L and as a material for food nanopackaging can provide an increase in the shelf life of products on the example of strawberries and tomatoes. We investigated the possibility of using methylcellulose films modified with CuO nanoparticles for packaging and storage of hard cheese "Holland". The distribution of CuO nanoparticles in the methylcellulose film was uniform. We found that methylcellulose films modified with CuO nanoparticles inhibited the growth and development of QMAFAM, coliforms, yeast and mold in experimental cheese sa mples. Our research has shown that during the cheese storage in thermostat at 35 ± 1 °C for 7 days, CuO nanoparticles migrated to the product from the film. Nevertheless, it is worth noting that the maximum change in the concentration of copper in the experimental samples was only 0.12 µg/mg, which is not a toxic concentration. In general, the small value of migration of CuO nanoparticles confirms the high stability of the developed preparation. Our results indicated that the CuO nanoparticles stabilized with gelatin have a high potential for use in food packaging - both as an independent nanofilm and as part of other packaging materials.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Cobre/química , Embalagem de Alimentos , Gelatina , Nanopartículas Metálicas/química , Metilcelulose , Óxidos
2.
Ecotoxicol Environ Saf ; 208: 111683, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396015

RESUMO

The possibility of detecting the damaging effect of cadmium salts on red blood cells (RBC) membrane by atomic force microscopy and light microscopy was studied. White wistar rats RBC were incubated with cadmium chloride in concentrations of 1 µg/l, 10 µg/l, 100 µg/l, and 1000 µg/l for the research. A comparison of sample preparation methods proposed by other authors in previous studies is made. The optimal method that does not significantly affect the change in the morphological features of the cell is selected. The quantitative assessment of damaged and destroyed RBC depending on the concentration of cadmium was performed by optical microscopy. The study showed that CdCl2 has a damaging effect on the RBC membrane, which leads to the formation of non-specific cell forms. A comparative assessment was made between the methods of optical microscopy and atomic force microscopy for the suitability of studying the morphological characteristics of abnormal forms of the RBC. It is shown that the method of atomic force microscopy allows registering morphological changes in the RBC that cannot be registered by optical microscopy. It is pointed that CdCl2 has effect on destruction of the RBC and the formation of specific bulges on the RBC membrane. Influence of CdCl2 on the RBC mechanical properties was studied using atomic force microscopy. The possibility of using atomic force microscopy in studies of morphology and mechanical properties of the RBC under toxicity effect of cadmium is shown.


Assuntos
Cloreto de Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Membrana Eritrocítica/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Microscopia de Força Atômica/métodos , Animais , Relação Dose-Resposta a Droga , Membrana Eritrocítica/patologia , Eritrócitos/citologia , Eritrócitos/metabolismo , Humanos , Metalotioneína/metabolismo , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...