Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1372349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698863

RESUMO

Pseudomonas aeruginosa (Pa) is an opportunistic bacterial pathogen responsible for severe hospital acquired infections in immunocompromised and elderly individuals. Emergence of increasingly drug resistant strains and the absence of a broad-spectrum prophylactic vaccine against both T3SA+ (type III secretion apparatus) and ExlA+/T3SA- Pa strains worsen the situation in a post-pandemic world. Thus, we formulated a candidate subunit vaccine (called ExlA/L-PaF/BECC/ME) against both Pa types. This bivalent vaccine was generated by combining the C-terminal active moiety of exolysin A (ExlA) produced by non-T3SA Pa strains with our T3SA-based vaccine platform, L-PaF, in an oil-in-water emulsion. The ExlA/L-PaF in ME (MedImmune emulsion) was then mixed with BECC438b, an engineered lipid A analogue and a TLR4 agonist. This formulation was administered intranasally (IN) to young and elderly mice to determine its potency across a diverse age-range. The elderly mice were used to mimic the infection seen in elderly humans, who are more susceptible to serious Pa disease compared to their young adult counterparts. After Pa infection, mice immunized with ExlA/L-PaF/BECC/ME displayed a T cell-mediated adaptive response while PBS-vaccinated mice experienced a rapid onset inflammatory response. Important genes and pathways were observed, which give rise to an anti-Pa immune response. Thus, this vaccine has the potential to protect aged individuals in our population from serious Pa infection.


Assuntos
Emulsões , Infecções por Pseudomonas , Vacinas contra Pseudomonas , Pseudomonas aeruginosa , Vacinas de Subunidades Antigênicas , Animais , Pseudomonas aeruginosa/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Camundongos , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/prevenção & controle , Vacinas contra Pseudomonas/imunologia , Vacinas contra Pseudomonas/administração & dosagem , Feminino , Desenvolvimento de Vacinas , Humanos , Anticorpos Antibacterianos/imunologia , Anticorpos Antibacterianos/sangue , Modelos Animais de Doenças , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética
2.
Microbiol Spectr ; 11(6): e0006223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37787548

RESUMO

IMPORTANCE: Shigellosis is endemic to low- and middle-income regions of the world where children are especially vulnerable. In many cases, there are pre-existing antibodies in the local population and the effect of prior exposure should be considered in the development and testing of vaccines against Shigella infection. Our study shows that L-DBF-induced immune responses are not adversely affected by prior exposure to this pathogen. Moreover, somewhat different cytokine profiles were observed in the lungs of vaccinated mice not having been exposed to Shigella, suggesting that the immune responses elicited by Shigella infection and L-DBF vaccination follow different pathways.


Assuntos
Disenteria Bacilar , Vacinas contra Shigella , Shigella , Vacinas , Criança , Animais , Camundongos , Humanos , Antígenos de Bactérias , Proteínas de Bactérias/genética , Disenteria Bacilar/prevenção & controle , Sorogrupo , Anticorpos Antibacterianos
3.
J Chromatogr A ; 1638: 461892, 2021 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-33477027

RESUMO

With advances in the design and fabrication of nanofluidic devices during the last decade, there have been a few reports on nucleic acid analysis using nanoscale electrophoresis. The attractive nature of nanofluidics is the unique phenomena associated with this length scale that are not observed using microchip electrophoresis. Many of these effects are surface-related and include electrostatics, surface roughness, van der Waals interactions, hydrogen bonding, and the electric double layer. The majority of reports related to nanoscale electrophoresis have utilized glass-based devices, which are not suitable for broad dissemination into the separation community because of the sophisticated, time consuming, and high-cost fabrication methods required to produce the relevant devices. In this study, we report the use of thermoplastic nanochannels (110 nm x 110 nm, depth x width) for the free solution electrokinetic analysis of ribonucleotide monophosphates (rNMPs). Thermoplastic devices with micro- and nanofluidic networks were fabricated using nanoimprint lithography (NIL) with the structures enclosed via thermal fusion bonding of a cover plate to the fluidic substrate. Unique to this report is that we fabricated devices in cyclic olefin copolymer (COC) that was thermally fusion bonded to a COC cover plate. Results using COC/COC devices were compared to poly(methyl methacrylate), PMMA, devices with a COC cover plate. Our results indicated that at pH = 7.9, the electrophoresis in free solution resulted in an average resolution of the rNMPs >4 (COC/COC device range = 1.94 - 8.88; PMMA/COC device range = 1.4 - 7.8) with some of the rNMPs showing field-dependent electrophoretic mobilities. Baseline separation of the rNMPs was not possible using PMMA- or COC-based microchip electrophoresis. We also found that COC/COC devices could be assembled and UV/O3 activated after device assembly with the dose of the UV/O3 affecting the magnitude of the electroosmotic flow, EOF. In addition, the bond strength between the substrate and cover plate of unmodified COC/COC devices was higher compared to PMMA/COC devices. The large differences in the electrophoretic mobilities of the rNMPs afforded by nanoscale electrophoresis will enable a new single-molecule sequencing platform we envision, which uses molecular-dependent electrophoretic mobilities to identify the constituent rNMPs generated from an intact RNA molecule using a processive exonuclease. With optimized nanoscale electrophoresis, the rNMPs could be identified via mobility matching at an accuracy >99% in both COC/COC and PMMA/COC devices.


Assuntos
Plásticos/química , Ribonucleotídeos/análise , Eletricidade , Eletro-Osmose , Eletroforese em Microchip , Concentração de Íons de Hidrogênio , Nanotecnologia , Polimetil Metacrilato/química , Água/química
4.
Nucleic Acids Res ; 49(7): e41, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33511416

RESUMO

Modifications in RNA are numerous (∼170) and in higher numbers compared to DNA (∼5) making the ability to sequence an RNA molecule to identify these modifications highly tenuous using next generation sequencing (NGS). The ability to immobilize an exoribonuclease enzyme, such as XRN1, to a solid support while maintaining its activity and capability to cleave both the canonical and modified ribonucleotides from an intact RNA molecule can be a viable approach for single-molecule RNA sequencing. In this study, we report an enzymatic reactor consisting of covalently attached XRN1 to a solid support as the groundwork for a novel RNA exosequencing technique. The covalent attachment of XRN1 to a plastic solid support was achieved using EDC/NHS coupling chemistry. Studies showed that the solid-phase digestion efficiency of model RNAs was 87.6 ± 2.8%, while the XRN1 solution-phase digestion for the same model was 78.3 ± 4.4%. The ability of immobilized XRN1 to digest methylated RNA containing m6A and m5C ribonucleotides was also demonstrated. The processivity and clipping rate of immobilized XRN1 secured using single-molecule fluorescence measurements of a single RNA transcript demonstrated a clipping rate of 26 ± 5 nt s-1 and a processivity of >10.5 kb at 25°C.


Assuntos
Distrofina/genética , Enzimas Imobilizadas/metabolismo , Exorribonucleases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , RNA/metabolismo , Análise de Sequência de RNA/métodos , Humanos , Clivagem do RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA