Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38475327

RESUMO

This paper uses a very effective way for surface modification of thermoplastic polymers during moulding. It is based on a grafting reaction between a thin layer of a functional polymer, deposited on a substrate in advance, and a polymer melt. In this paper, a glycol-modified polyethylene terephthalate (PETG) that was brought in contact with a polyethyleneimine layer during fused filament fabrication is investigated. The focus of this paper is the investigation of the reaction product. Grafting was realised by the formation of stable amide bonds by amidation of ester groups in the main chain of a PETG. XPS investigations revealed that the conversion of amino groups was very high, the distribution was even, and the quantity of amino groups per polyester surface area was still very high. The surface properties of the produced polyester part were mainly characterised by polyethyleneimine. The grafting was able to resist several cycles of extraction in alkaline solutions. The stability was only limited by saponification of the polyester. The degree of surface modification was dependent on the molar mass of polyethyleneimine. This could be rationalised, because grafting only occurred with the one polyethyleneimine molecule that is in close vicinity to the polyester surface when both components come in contact. Fused deposition modelling was chosen as the model process with control over each processing step. However, any other moulding process may be applied, particularly injection moulding for mass production.

2.
Sci Rep ; 13(1): 15373, 2023 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-37716997

RESUMO

Forests cover about one-third of Europe's surface and their growth is essential for climate protection through carbon sequestration and many other economic, environmental, and sociocultural ecosystem services. However, reports on how climate change affects forest growth are contradictory, even for same regions. We used 415 unique long-term experiments including 642 plots across Europe covering seven tree species and surveys from 1878 to 2016, and showed that on average forest growth strongly accelerated since the earliest surveys. Based on a subset of 189 plots in Scots pine (the most widespread tree species in Europe) and high-resolution climate data, we identified clear large-regional differences; growth is strongly increasing in Northern Europe and decreasing in the Southwest. A less pronounced increase, which is probably not mainly driven by climate, prevails on large areas of Western, Central and Eastern Europe. The identified regional growth trends suggest adaptive management on regional level for achieving climate-smart forests.


Assuntos
Ecossistema , Florestas , Europa (Continente) , Europa Oriental , Árvores
3.
Polymers (Basel) ; 14(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35631923

RESUMO

Demand for direct chemical modification of functional material on a surface is increasing in various fields. A new approach for a functionalized surface is investigated by applying a conventional laser in order to generate chemical activation by photothermal energy. Poly(ethyleneimine) (PEI), with a high density of amino groups, is chemically grafted on poly(methyl methacrylate) (PMMA) by irradiation of a CO2 laser (10.6 µm). Laser parameters such as power, scan rate, and focal length are observed to play an important role in order to introduce effective photothermal energy for the chemical reaction between PEI and PMMA. By optimization of laser parameters, the amide compound is produced as a result of the reaction of amine from PEI and the ester of PMMA successfully. The PMMA surface modified with PEI is analyzed by XPS and TOF-SIMS to identify the functional groups. Furthermore, the surface is characterized in terms of wettability, adhesion force, and surface charge for various applications. Finally, reaction with dye and metal on the amine-terminated PMMA shows promising results in supplying a selective and reliable functional substrate.

4.
Mater Horiz ; 9(5): 1468-1478, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35244665

RESUMO

Self-powered tactile module-based electronic skins incorporating triboelectric nanogenerator (TENG) appears to be a worthwhile alternative for smart monitoring devices in terms of sustainable energy harvesting. On top of it, ultra-stretchability and detection sensitivity are imperative to mimic human skin. We report, for the first time, a metal-free single electrode TENG-based self-powered tactile module comprising of microwells (diameters 2 µm and 200 nm, respectively) on fluoroelastomer (FKM) and laser induced graphene (LIG) electrodes by in situ simultaneous transfer printing method. Direct imprinting of both the active surface and LIG electrode on a tribonegative FKM has not been attempted before. The resulting triboelectric module exhibits impressive maximum power density of 715 mW m-2, open circuit voltage and maximum output current of 148 V and 9.6 µA respectively for a matching load of 10 MΩ. Moreover, the TENG unit is very robust and sustained high electrical output even at 200% elongation. A dielectric-to-dielectric TENG-based tactile sensor is also constructed using FKM (negative tribolayer) and TiO2 deposited micropatterned PDMS. Resulting tribo-sensor demonstrates remarkable motion and force sensitivity. It can also distinguish subtle human contact force that can simulate skin with high sensitivity and therefore, can be utilized for potential e-skin/bionic skin applications in health and human-machine interfaces.


Assuntos
Nanotecnologia , Dispositivos Eletrônicos Vestíveis , Elasticidade , Eletrodos , Humanos , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...