Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 14: 214, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765223

RESUMO

In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). Receptor interaction with partner proteins has emerged as a novel mechanism to alter GPCR signaling in pathophysiological conditions. We propose here that GABAB activity is inhibited through the specific binding of fibulin-2, an extracellular matrix protein, to the B1a subunit in a rat model of neuropathic pain. We demonstrate that fibulin-2 hampers GABAB activation, presumably through decreasing agonist-induced conformational changes. Fibulin-2 regulates the GABAB-mediated presynaptic inhibition of neurotransmitter release and weakens the GABAB-mediated inhibitory effect in neuronal cell culture. In the dorsal spinal cord of neuropathic rats, fibulin-2 is overexpressed and colocalized with B1a. Fibulin-2 may thus interact with presynaptic GABAB receptors, including those on nociceptive afferents. By applying anti-fibulin-2 siRNA in vivo, we enhanced the antinociceptive effect of intrathecal baclofen in neuropathic rats, thus demonstrating that fibulin-2 limits the action of GABAB agonists in vivo. Taken together, our data provide an example of an endogenous regulation of GABAB receptor by extracellular matrix proteins and demonstrate its functional impact on pathophysiological processes of pain sensitization.

2.
Br J Pharmacol ; 175(12): 2362-2374, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28214378

RESUMO

L-type voltage-gated calcium channels are ubiquitous channels in the CNS. L-type calcium channels (LTCs) are mostly post-synaptic channels regulating neuronal firing and gene expression. They play a role in important physio-pathological processes such as learning and memory, Parkinson's disease, autism and, as recognized more recently, in the pathophysiology of pain processes. Classically, the fundamental role of these channels in cardiovascular functions has limited the use of classical molecules to treat LTC-dependent disorders. However, when applied locally in the dorsal horn of the spinal cord, the three families of LTC pharmacological blockers - dihydropyridines (nifedipine), phenylalkylamines (verapamil) and benzothiazepines (diltiazem) - proved effective in altering short-term sensitization to pain, inflammation-induced hyperexcitability and neuropathy-induced allodynia. Two subtypes of LTCs, Cav 1.2 and Cav 1.3, are expressed in the dorsal horn of the spinal cord, where Cav 1.2 channels are localized mostly in the soma and proximal dendritic shafts, and Cav 1.3 channels are more distally located in the somato-dendritic compartment. Together with their different kinetics and pharmacological properties, this spatial distribution contributes to their separate roles in shaping short- and long-term sensitization to pain. Cav 1.3 channels sustain the expression of plateau potentials, an input/output amplification phenomenon that contributes to short-term sensitization to pain such as prolonged after-discharges, dynamic receptive fields and windup. The Cav 1.2 channels support calcium influx that is crucial for the excitation-transcription coupling underlying nerve injury-induced dorsal horn hyperexcitability. These subtype-specific cellular mechanisms may have different consequences in the development and/or the maintenance of pathological pain. Recent progress in developing more specific compounds for each subunit will offer new opportunities to modulate LTCs for the treatment of pathological pain with reduced side-effects. LINKED ARTICLES: This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Nociceptividade , Medula Espinal/fisiopatologia , Animais , Humanos , Medula Espinal/metabolismo
3.
Pain ; 155(2): 275-291, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24120461

RESUMO

Bone cancer pain is a common and disruptive symptom in cancer patients. In cancer pain animal models, massive reactive astrogliosis in the dorsal horn of the spinal cord has been reported. Because astrocytes may behave as driving partners for pathological pain, we investigated the temporal development of pain behavior and reactive astrogliosis in a rat bone cancer pain model induced by injecting MRMT-1 rat mammary gland carcinoma cells into the tibia. Along with the development of bone lesions, a gradual mechanical and thermal allodynia and hyperalgesia as well as a reduced use of the affected limb developed in bone cancer-bearing animals, but not in sham-treated animals. Dorsal horn Fos expression after nonpainful palpation of the injected limb was also increased in bone cancer-bearing animals. However, at any time during the evolution of tumor, there was no increase in glial fibrillary acidic protein (GFAP) immunoreactivity in the dorsal horn. Further analysis at 21days after injection of the tumor showed no increase in GFAP and interleukin (IL) 1ß transcripts, number of superficial dorsal horn S100ß protein immunoreactive astrocytes, or immunoreactivity for microglial markers (OX-42 and Iba-1). In contrast, all these parameters were increased in the dorsal horn of rats 2weeks after sciatic nerve ligation. This suggests that in some cases, bone cancer pain may not be correlated with spinal overexpression of reactive glia markers, whereas neuropathic pain is. Glia may thus play different roles in the development and maintenance of chronic pain in these 2 situations.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/metabolismo , Neuroglia/metabolismo , Medição da Dor/métodos , Dor/metabolismo , Medula Espinal/metabolismo , Animais , Neoplasias Ósseas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Masculino , Neuroglia/patologia , Dor/patologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Células Tumorais Cultivadas
4.
Pain ; 154(11): 2529-2546, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23891900

RESUMO

In the spinal nerve ligation (SNL) model of neuropathic pain, synaptic plasticity shifts the excitation/inhibition balance toward excitation in the spinal dorsal horn. We investigated the deregulation of the synaptogenic neuroligin (NL) molecules, whose NL1 and NL2 isoforms are primarily encountered at excitatory and inhibitory synapses, respectively. In the dorsal horn of SNL rats, NL2 was overexpressed whereas NL1 remained unchanged. In control animals, intrathecal injections of small interfering RNA (siRNA) targeting NL2 increased mechanical sensitivity, which confirmed the association of NL2 with inhibition. By contrast, siRNA application produced antinociceptive effects in SNL rats. Regarding NL partners, expression of the excitatory postsynaptic scaffolding protein PSD95 unexpectedly covaried with NL2 overexpression, and NL2/PSD95 protein interaction and colocalization increased. Expression of the inhibitory scaffolding protein gephyrin remained unchanged, indicating a partial change in NL2 postsynaptic partners in SNL rats. This phenomenon appears to be specific to the NL2(-) isoform. Our data showed unexpected upregulation and pronociceptive effects of the "inhibitory" NL2 in neuropathic pain, suggesting a functional shift of NL2 from inhibition to excitation that changed the synaptic ratio toward higher excitation.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neuralgia/fisiopatologia , Animais , Comportamento Animal/fisiologia , Western Blotting , Moléculas de Adesão Celular Neuronais/genética , Dor Crônica/fisiopatologia , Proteína 4 Homóloga a Disks-Large , Hiperalgesia/fisiopatologia , Imuno-Histoquímica , Imunoprecipitação , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligadura , Masculino , Proteínas de Membrana/genética , Fibras Nervosas Amielínicas/fisiologia , Proteínas do Tecido Nervoso/genética , Neuralgia/psicologia , Estimulação Física , Células do Corno Posterior/fisiologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Nervos Espinhais/fisiologia
5.
EMBO J ; 31(15): 3239-51, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22692127

RESUMO

In the central nervous system, the inhibitory GABAB receptor is the archetype of heterodimeric G protein-coupled receptors (GPCRs). However, the regulation of GABAB dimerization, and more generally of GPCR oligomerization, remains largely unknown. We propose a novel mechanism for inhibition of GPCR activity through de-dimerization in pathological conditions. We show here that 14-3-3ζ, a GABAB1-binding protein, dissociates the GABAB heterodimer, resulting in the impairment of GABAB signalling in spinal neurons. In the dorsal spinal cord of neuropathic rats, 14-3-3ζ is overexpressed and weakens GABAB inhibition. Using anti-14-3-3ζ siRNA or competing peptides disrupts 14-3-3ζ/GABAB1 interaction and restores functional GABAB heterodimers in the dorsal horn. Importantly, both strategies greatly enhance the anti-nociceptive effect of intrathecal Baclofen in neuropathic rats. Taken together, our data provide the first example of endogenous regulation of a GPCR oligomeric state and demonstrate its functional impact on the pathophysiological process of neuropathic pain sensitization.


Assuntos
Proteínas 14-3-3/fisiologia , Dor Crônica/patologia , Receptores de GABA-B/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animais , Células Cultivadas , Dor Crônica/genética , Dor Crônica/metabolismo , Modelos Animais de Doenças , Neuralgia/genética , Neuralgia/metabolismo , Neuralgia/patologia , Células do Corno Posterior/efeitos dos fármacos , Células do Corno Posterior/metabolismo , Células do Corno Posterior/patologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , Domínios e Motivos de Interação entre Proteínas/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Transgênicos , Receptores de GABA-B/química , Receptores de GABA-B/genética
6.
Nat Methods ; 9(4): 396-402, 2012 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-22343342

RESUMO

Local anesthetics effectively suppress pain sensation, but most of these compounds act nonselectively, inhibiting activity of all neurons. Moreover, their actions abate slowly, preventing precise spatial and temporal control of nociception. We developed a photoisomerizable molecule, quaternary ammonium-azobenzene-quaternary ammonium (QAQ), that enables rapid and selective optical control of nociception. QAQ is membrane-impermeant and has no effect on most cells, but it infiltrates pain-sensing neurons through endogenous ion channels that are activated by noxious stimuli, primarily TRPV1. After QAQ accumulates intracellularly, it blocks voltage-gated ion channels in the trans form but not the cis form. QAQ enables reversible optical silencing of mouse nociceptive neuron firing without exogenous gene expression and can serve as a light-sensitive analgesic in rats in vivo. Because intracellular QAQ accumulation is a consequence of nociceptive ion-channel activity, QAQ-mediated photosensitization is a platform for understanding signaling mechanisms in acute and chronic pain.


Assuntos
Canais Iônicos/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptividade/efeitos da radiação , Animais , Compostos Azo/química , Compostos Azo/farmacologia , Linhagem Celular , Células HEK293 , Humanos , Canais Iônicos/antagonistas & inibidores , Camundongos , Terminações Nervosas/efeitos dos fármacos , Terminações Nervosas/efeitos da radiação , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos da radiação , Estimulação Luminosa , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Ratos , Receptores Purinérgicos P2X7/metabolismo , Medula Espinal/citologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/efeitos da radiação , Canais de Cátion TRPV/metabolismo , Fatores de Tempo
7.
EMBO J ; 30(18): 3830-41, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21804529

RESUMO

Chronic pain states are characterized by long-term sensitization of spinal cord neurons that relay nociceptive information to the brain. Among the mechanisms involved, up-regulation of Cav1.2-comprising L-type calcium channel (Cav1.2-LTC) in spinal dorsal horn have a crucial role in chronic neuropathic pain. Here, we address a mechanism of translational regulation of this calcium channel. Translational regulation by microRNAs is a key factor in the expression and function of eukaryotic genomes. Because perfect matching to target sequence is not required for inhibition, theoretically, microRNAs could regulate simultaneously multiple mRNAs. We show here that a single microRNA, miR-103, simultaneously regulates the expression of the three subunits forming Cav1.2-LTC in a novel integrative regulation. This regulation is bidirectional since knocking-down or over-expressing miR-103, respectively, up- or down-regulate the level of Cav1.2-LTC translation. Functionally, we show that miR-103 knockdown in naive rats results in hypersensitivity to pain. Moreover, we demonstrate that miR-103 is down-regulated in neuropathic animals and that miR-103 intrathecal applications successfully relieve pain, identifying miR-103 as a novel possible therapeutic target in neuropathic chronic pain.


Assuntos
Canais de Cálcio Tipo L/biossíntese , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Dor , Biossíntese de Proteínas , Animais , Ratos
8.
J Physiol ; 589(Pt 11): 2733-43, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21486783

RESUMO

The dorsal horn of the spinal cord is the first central relay where nociceptive inputs are processed. Based on the expression and modulation of intrinsic electrophysiological properties in in vitro slice preparations, dorsal horn neurones (DHNs) display different discharge patterns (tonic, plateau or rhythmic), which shape the neurone's response to sensory inputs. However, it is unclear whether intrinsic properties play any role in sensory processing in vivo. Using in vivo patch clamp recordings in the adult rat, we here examine whether these intrinsic properties are present, and to what extent they determine the DHN response to natural stimulation. We focused primarily on wide dynamic range neurones in deep laminae. These cells displayed a multicomponent peripheral receptive field, comprising an excitatory firing zone, a low-probability firing fringe, and adjacent inhibitory zones. Deep DHNs presented similar intrinsic properties to those observed in vitro, including plateau potentials. These plateaus, underlying high frequency accelerating discharges and after-discharges, were triggered by mechanical stimulation of the excitatory receptive field. Persistent activities induced by activation of plateau potentials were interrupted by stimulation of peripheral inhibitory zones. Moreover, we show that plateau activation is necessary for the expression of windup in response to repetitive, nociceptive stimulation. Finally, using the spinal nerve ligation model of neuropathy, we demonstrate a significant increase in the proportion of plateau neurones in deep dorsal laminae. Our data, therefore, establish that intrinsic amplification properties are expressed within intact spinal circuits and suggest their involvement in neuropathy-induced hyperexcitability of deep DHNs.


Assuntos
Membrana Celular/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Nociceptores/fisiologia , Células do Corno Posterior/fisiologia , Potenciais de Ação/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Membro Posterior/inervação , Hiperalgesia/fisiopatologia , Ligadura , Masculino , Potenciais da Membrana/fisiologia , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Estimulação Física , Células do Corno Posterior/citologia , Células do Corno Posterior/fisiopatologia , Ratos , Ratos Wistar , Nervo Isquiático/cirurgia , Neuropatia Ciática/fisiopatologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Medula Espinal/fisiopatologia , Potenciais Sinápticos/fisiologia
9.
J Neurosci ; 30(3): 1073-85, 2010 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20089916

RESUMO

The maintenance of chronic pain states requires the regulation of gene expression, which relies on an influx of calcium. Calcium influx through neuronal L-type voltage-gated calcium channels (LTCs) plays a pivotal role in excitation-transcription coupling, but the involvement of LTCs in chronic pain remains unclear. We used a peptide nucleic acid (transportan 10-PNA conjugates)-based antisense strategy to investigate the role of the LTC subtypes Ca(V)1.2 and Ca(V)1.3 in long-term pain sensitization in a rat model of neuropathy (spinal nerve ligation). Our results demonstrate that specific knockdown of Ca(V)1.2 in the spinal dorsal horn reversed the neuropathy-associated mechanical hypersensitivity and the hyperexcitability and increased responsiveness of dorsal horn neurons. Intrathecal application of anti-Ca(V)1.2 siRNAs confirmed the preceding results. We also demonstrated an upregulation of Ca(V)1.2 mRNA and protein in neuropathic animals concomitant to specific Ca(V)1.2-dependent phosphorylation of the cAMP response element (CRE)-binding protein (CREB) transcription factor. Moreover, spinal nerve ligation animals showed enhanced transcription of the CREB/CRE-dependent gene COX-2 (cyclooxygenase 2), which also depends strictly on Ca(V)1.2 activation. We propose that L-type calcium channels in the spinal dorsal horn play an important role in pain processing, and that the maintenance of chronic neuropathic pain depends specifically on channels comprising Ca(V)1.2.


Assuntos
Bloqueadores dos Canais de Cálcio/administração & dosagem , Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio/metabolismo , Ciática/metabolismo , Ciática/fisiopatologia , Animais , Proteína de Ligação a CREB/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio Tipo L/genética , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Nicardipino/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/uso terapêutico , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/uso terapêutico , Ratos , Ratos Wistar , Ciática/tratamento farmacológico , Ciática/patologia , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
10.
J Comp Neurol ; 516(3): 199-212, 2009 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-19598284

RESUMO

Dendritic synthesis and release of neuropeptides have been demonstrated in hypothalamic neurosecretory neurons. Here we tested whether this mechanism may be applicable to galanin in rat locus coeruleus (LC) neurons. Light and electron microscopic immunocytochemistry demonstrated the occurrence of galanin peptide in secretory granules within dendritic processes. In situ hybridization at the light and electron microscopic level showed galanin mRNA in these LC processes. Moreover, the levels of the transcript and its extension into the dendrites were significantly increased by reserpine treatment. Finally, evidence for exocytotic release from large dense-core vesicles in LC dendrites was obtained by using tannic acid-treated slices. Taken together, these results indicate that galanin can be synthesized in, and possibly released from, LC. These data support a key function of the neuropeptide galanin as an auto-paracrine local modulator in a major, strongly divergent monoaminergic regulatory system.


Assuntos
Dendritos/metabolismo , Galanina/metabolismo , Locus Cerúleo/citologia , Locus Cerúleo/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Animais , Fármacos do Sistema Nervoso Central/farmacologia , Dendritos/efeitos dos fármacos , Dendritos/ultraestrutura , Exocitose/efeitos dos fármacos , Técnicas In Vitro , Locus Cerúleo/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reserpina/farmacologia , Vesículas Secretórias/efeitos dos fármacos , Vesículas Secretórias/metabolismo , Vesículas Secretórias/ultraestrutura , Taninos/farmacologia
11.
J Soc Biol ; 203(1): 87-97, 2009.
Artigo em Francês | MEDLINE | ID: mdl-19358814

RESUMO

The GABA(B) receptors belong to the family of class C metabotropic receptors. They are inhibitory receptors forming obligatory heterodimers. Their analgesic role in the dorsal horn of the spinal cord is well established since more than 25 years ago. However, Baclofen, the reference agonist of the GABA(B) receptor, proved to have little efficiency in clinics in neuropathic patients. It seems therefore useful to decipher GABA(B) functions in the nociceptive circuitry, and their regulation in conditions of chronic pain. In the present review, we will focus first on the distribution of the GABA(B) subtypes. Then, we will consider their pre- and post-synaptic functions in the dorsal horn of naïve rats. Finally, we will document the mechanisms that may lead to receptor impairment in neuropathic conditions.


Assuntos
Hiperalgesia/fisiopatologia , Dor/fisiopatologia , Receptores de GABA-B/fisiologia , Proteínas 14-3-3/fisiologia , Regulação Alostérica , Animais , Baclofeno/farmacologia , Baclofeno/uso terapêutico , Canais de Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Doença Crônica , Dimerização , Proteínas da Matriz Extracelular/fisiologia , Agonistas dos Receptores de GABA-B , Ácido Glutâmico/fisiologia , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/fisiologia , Nociceptores/efeitos dos fármacos , Nociceptores/fisiologia , Dor/tratamento farmacológico , Células do Corno Posterior/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/fisiologia , Ratos , Receptores de GABA-B/química , Receptores de GABA-B/deficiência , Receptores de GABA-B/genética , Ácido gama-Aminobutírico/fisiologia
12.
Brain Res Rev ; 60(1): 43-56, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19146876

RESUMO

Glutamate and gamma-amino butyric acid (GABA) are respectively two major excitatory and inhibitory neurotransmitters of the adult mammalian central nervous system. These neurotransmitters exert their action through two types of receptors: ionotropic and metabotropic receptors. While ionotropic receptors are ligand gated ion channels involved in fast synaptic transmission, metabotropic receptors belong to the superfamily of G-protein coupled receptors (GPCRs) and are responsible for the neuromodulatory effect of glutamate and GABA. Metabotropic glutamate receptors (mGluRs) and metabotropic GABA receptors (GABA-B) are present at different levels of the pain neuraxis where they regulate nociceptive transmission and pain. The present review will focus on the role of these receptors in the modulation of pain perception.


Assuntos
Sistema Nervoso Central/metabolismo , Nociceptores/metabolismo , Dor/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de GABA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Vias Aferentes/metabolismo , Vias Aferentes/fisiopatologia , Animais , Sistema Nervoso Central/fisiopatologia , Humanos , Inibição Neural/fisiologia , Dor/fisiopatologia , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia
13.
Eur J Neurosci ; 28(11): 2243-53, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19019203

RESUMO

The excitability of spinal motoneurons (MNs) is regulated by acetylcholine via the activation of muscarinic receptors. The objective of the present study was to determine whether this cholinergic modulation of MN excitability is altered following a chronic spinal cord transection. Juvenile salamanders (Pleurodeles waltlii) were spinally transected at the mid-trunk level, and patch-clamp recordings from hindlimb MNs in spinal cord slices were performed 9-30 days after transection, with and without bath application of muscarine (20 mum). Our results showed that the input-output relationship was larger in MNs recorded 2 weeks after spinal transection than in MNs recorded 3-4 weeks after spinal transection. They further revealed that muscarine increased both the gain of MNs and the proportion of MNs that could exhibit plateau potentials and afterdischarges, whereas it decreased the amplitude of the medium afterhypolarizing potential. Moreover, muscarine had no effect on the hyperpolarization-activated cation current (I(h)), whereas it increased the inward rectifying K(+) current (I(Kir)) in MNs recorded > or = 2 weeks after spinal transection. We conclude that following chronic spinal cord injury, the muscarinic modulation of some intrinsic properties of MNs previously reported in acute spinal-transected animals [S. Chevallier et al. (2006)The Journal of Physiology, 570, 525-540] was preserved, whereas that of other intrinsic properties of MNs was suppressed, either transiently (I(Kir)) or definitively (I(h)). These alterations in muscarinic modulation of MN excitability may contribute to the spontaneous recovery of locomotion displayed in long-term chronic spinal-transected salamanders.


Assuntos
Membro Posterior/inervação , Neurônios Motores/metabolismo , Pleurodeles/fisiologia , Receptores Muscarínicos/metabolismo , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Acetilcolina/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Doença Crônica , Modelos Animais de Doenças , Membro Posterior/fisiopatologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios Motores/efeitos dos fármacos , Muscarina/farmacologia , Agonistas Muscarínicos/farmacologia , Técnicas de Cultura de Órgãos , Paralisia/metabolismo , Paralisia/fisiopatologia , Técnicas de Patch-Clamp , Pleurodeles/anatomia & histologia , Receptores Muscarínicos/efeitos dos fármacos , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia
14.
J Neurosci Res ; 86(15): 3348-58, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18627027

RESUMO

Descending pathways in the spinal cord of adult urodele amphibians show a high regenerative ability after body spinal cord transection; regenerated axons regrow into the transected spinal cord, and hindlimb locomotor recovery occurs spontaneously. Little is currently known about the molecular basis of spinal cord regeneration in urodeles, but it is believed that fibroblast growth factor-2 (FGF2) may play an important role by inducing proliferation of neural progenitor cells. The aim of our study, using in situ hybridization in adult Pleurodeles waltlii, was twofold: 1) to document FGF2 mRNA expression pattern along the brainstem-spinal cord of intact salamanders and 2) to investigate the changes in this pattern in animals unable to display hindlimb locomotor movements and in animals having fully recovered hindlimb locomotor activity after body spinal cord transection. This design establishes a firm basis for further studies on the role of FGF2 in functional recovery of hindlimb locomotion. Our results revealed a decreasing rostrocaudal gradient in FGF2 mRNA expression along the brainstem-spinal cord in intact animals. They further demonstrated a long-lasting up-regulation of FGF2 mRNA expression in response to spinal transection at the midtrunk level, both in brainstem and in the spinal cord below the injury. Finally, double immunolabeling showed that FGF2 was up-regulated in neuroglial, presumably undifferentiated, cells. Therefore, we propose that FGF2 may be involved in cell proliferation and/or neuronal differentiation after body spinal cord transection in salamander and could thus play an important role in functional recovery of locomotion after spinal lesion.


Assuntos
Tronco Encefálico/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regeneração Nervosa/fisiologia , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/metabolismo , Animais , Axotomia , Diferenciação Celular/fisiologia , Proliferação de Células , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização In Situ , Microscopia Confocal , Neuroglia/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Pleurodeles , RNA Mensageiro/análise , Recuperação de Função Fisiológica
15.
Brain Res Rev ; 57(1): 147-61, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17920689

RESUMO

Among living tetrapods, salamanders are regarded as most closely resembling the first terrestrial vertebrates, and are therefore an interesting group in which the evolutionary changes in the locomotor behaviour from aquatic to terrestrial habitats can be inferred. Salamanders exhibit two locomotor modes: swimming and terrestrial stepping. The swimming is anguilliform and resembles closely that of the lamprey. On the ground, the salamander switches to a stepping gait with axial undulations that is also observed in many reptiles. The salamander is therefore ideally suited for examining the neural mechanisms for the generation of these two locomotor modes, as well as the neural mechanisms of gait transition. In the present paper, we describe the kinematics and patterns of activation of axial and limb muscles during stepping and swimming in adult salamanders. We then review the current neurobiological data about the organisation of the spinal networks underlying swimming and stepping, and the mechanisms of gait transition. Finally we report modelling studies aimed at understanding the organisation and operation of the salamander locomotor circuits. Altogether, the neurobiological and the modelling data support the hypothesis of a phylogenetic conservatism from agnathians to amphibians of the spinal locomotor networks generating axial motor patterns.


Assuntos
Instinto , Locomoção/fisiologia , Medula Espinal/fisiologia , Urodelos/fisiologia , Animais , Fenômenos Biomecânicos , Extremidades/inervação , Extremidades/fisiologia , Marcha/fisiologia , Lampreias , Modelos Neurológicos , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia
16.
Eur J Neurosci ; 25(5): 1402-16, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17425567

RESUMO

Gamma-aminobutyric acid type B receptors (GABAB) are G-protein-coupled receptors that mediate GABAergic inhibition in the brain. Their functional expression is dependent upon the formation of heterodimers between GABAB1 and GABAB2 subunits, a process that occurs within the endoplasmic reticulum. However, the mechanisms that regulate GABAB receptor oligomerization at the plasma membrane remain largely unknown. We first characterized the functional cytoarchitecture of an organotypic co-culture model of rat dorsal root ganglia and spinal cord. Subsequently, we studied the interactions between GABAB subunits after chronic stimulation of sensory fibres with capsaicin. Surface labelling of recombinant proteins showed a decrease in subunit co-localization and GABAB2 labelling, after capsaicin treatment. In these conditions, fluorescence lifetime imaging measurements further demonstrated a loss of interactions between green fluorescent protein-GABAB1b and t-dimer discosoma sp red fluorescent protein-GABAB2 subunits. Finally, we established that the GABAB receptor undergoes clathrin-dependent internalization and rapid recycling to the plasma membrane following activation with baclofen, a GABAB agonist. However, in cultures chronically stimulated with capsaicin, the agonist-induced endocytosis was decreased, reflecting changes in the dimeric state of the receptor. Taken together, our results indicate that the chronic stimulation of sensory fibres can dissociate the GABAB heterodimer and alters its responsiveness to the endogenous ligand. Chronic stimulation thus modulates receptor oligomerization, providing additional levels of control of signalling.


Assuntos
Capsaicina/farmacologia , Neurônios Aferentes/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Receptores de GABA-B/metabolismo , Animais , Animais Recém-Nascidos , Bicuculina/farmacologia , Técnicas de Cocultura/métodos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Endocitose/efeitos dos fármacos , Endocitose/fisiologia , Antagonistas GABAérgicos/farmacologia , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Ionóforos/farmacologia , Monensin/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios Aferentes/fisiologia , Técnicas de Cultura de Órgãos , Transporte Proteico/efeitos dos fármacos , Ratos , Medula Espinal/citologia , Medula Espinal/fisiologia , Fatores de Tempo , Transfecção/métodos
17.
Eur J Neurosci ; 25(1): 127-35, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17241274

RESUMO

In the dorsal horn of the spinal cord, pain-transmitting neurons exhibit action potential windup, a form of short-term plasticity, which consists of a progressive increase in neuronal response during repetitive stimulation of nociceptive input fibers. Windup depends on N-methyl-D-aspartate (NMDA) receptor activation, but previous in vitro studies indicated that windup also relies on intrinsic plateau properties of spinal neurons. In the present study, we considered the possible involvement of these properties in windup in vivo. For this purpose, we first studied a nociceptive flexion reflex in the rat. We showed that windup of the reflex is actually suppressed by blockers of L-type calcium current and Ca(2+)-activated non-specific cationic current (Ican), the two main depolarizing conductances of plateau potentials. We further showed that, during windup, NMDA receptors provide a critical excitatory component in a dynamic balance of excitatory and inhibitory inputs which ultimately activates L-type calcium channels. The nociceptive reflex involves at least two neuronal groups, which may express intrinsic amplification properties, motor neurons and dorsal horn neurons. By means of extracellular recordings in the dorsal horn, we showed that windup of dorsal horn neuron discharge was sensitive to the modulators of L-type calcium current. Altogether, our results suggest that, in vivo, windup also depends on the amplification properties of spinal neurons, the triggering of which requires previous activation of NMDA receptors.


Assuntos
Canais de Cálcio Tipo L/fisiologia , Plasticidade Neuronal/fisiologia , Nociceptores/fisiopatologia , Receptores de N-Metil-D-Aspartato/fisiologia , 2-Amino-5-fosfonovalerato/farmacologia , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Potenciais de Ação/efeitos da radiação , Animais , Animais Recém-Nascidos , Agonistas dos Canais de Cálcio/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Maleato de Dizocilpina/farmacologia , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Estimulação Elétrica/efeitos adversos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glicinérgicos/farmacologia , Técnicas In Vitro , Modelos Biológicos , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nociceptores/efeitos dos fármacos , Estimulação Física/efeitos adversos , Ratos , Ratos Wistar , Reflexo/efeitos dos fármacos , Reflexo/efeitos da radiação , Medula Espinal/citologia , Estricnina/farmacologia
18.
J Physiol ; 578(Pt 2): 439-50, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17068103

RESUMO

Multiple sclerosis (MS) is characterized by inflammatory lesions throughout the central nervous system. Spinal cord inflammation correlates with many neurological defecits. Most MS patients suffer from micturition dysfunction with urinary incontinence and difficulty in emptying the bladder. In experimental autoimmune encephalomyelitis (EAE) induced in female Lewis rats, a model of MS, we investigated at distinct clinical severity scores the micturition reflex by cystometrograms. All rats presenting symptomatic EAE suffered from micturition reflex alterations with either detrusor areflexia or hyperactivity. During pre-symptomatic EAE, a majority of rats presented with detrusor areflexia, whereas at onset of clinical EAE, detrusor hyperactivity was predominant. During progression of EAE, detrusor areflexia and hyperactivity were equally expressed. Bladder hyperactivity was suppressed by activation of glycine and GABA receptors in the lumbosacral spinal cord with an order of potency: glycine > GABA(B) > GABA(A). Detrusor areflexia was transformed into detrusor hyperactivity by blocking glycine and GABA receptors. Spinalization abolished bladder activity in rats presenting detrusor hyperactivity and failed to induce activity in detrusor areflexia. Altogether, the results reveal an exaggerated descending excitatory control in both detrusor reflex alterations. In detrusor areflexia, a strong segmental inhibition dominates this excitatory control. As in treatment of MS, electrical stimulation of sacral roots reduced detrusor hyperactivity in EAE. Blockade of glycine receptors in the lumbosacral spinal cord suppressed the stimulation-induced inhibitory effect. Our data help to better understand bladder dysfunction and treatment mechanisms to suppress detrusor hyperactivity in MS.


Assuntos
Encefalomielite Autoimune Experimental/fisiopatologia , Reflexo Anormal/fisiologia , Bexiga Urinaria Neurogênica/fisiopatologia , Animais , Baclofeno/administração & dosagem , Baclofeno/farmacologia , Bicuculina/farmacologia , Cauda Equina/efeitos dos fármacos , Cauda Equina/fisiopatologia , Vias Eferentes/efeitos dos fármacos , Vias Eferentes/fisiopatologia , Estimulação Elétrica , Encefalomielite Autoimune Experimental/etiologia , Feminino , Glicina/administração & dosagem , Glicina/farmacologia , Injeções Espinhais , Plexo Lombossacral/fisiopatologia , Modelos Biológicos , Muscimol/administração & dosagem , Muscimol/farmacologia , Nervos Periféricos/fisiopatologia , Ratos , Ratos Endogâmicos Lew , Receptores de Glicina/antagonistas & inibidores , Reflexo Anormal/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/fisiopatologia , Estricnina/farmacologia , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/fisiopatologia , Bexiga Urinaria Neurogênica/terapia , Bexiga Urinária Hiperativa/fisiopatologia , Bexiga Urinária Hiperativa/terapia , Retenção Urinária/fisiopatologia , Ácido gama-Aminobutírico/administração & dosagem , Ácido gama-Aminobutírico/farmacologia
19.
J Comp Neurol ; 499(3): 391-403, 2006 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-16998907

RESUMO

The 29/30 amino acid neuropeptide galanin has been implicated in pain processing at the spinal level and local dorsal horn neurons expressing the Gal(1) receptor may play a critical role. In order to determine the transmitter identity of these neurons, we used immunohistochemistry and antibodies against the Gal(1) receptor and the three vesicular glutamate transporters (VGLUTs), as well as in situ hybridization, to explore a possible glutamatergic phenotype. Gal(1) protein, which could not be demonstrated in Gal(1) knockout mice, colocalized with VGLUT2 protein, but not with glutamate decarboxylase, in many nerve endings in lamina II. Moreover, Gal(1) and VGLUT2 transcripts were often found in the same cell bodies in laminae I-IV. Gal(1)-protein and galanin-peptide showed an overlapping distribution but were not colocalized. Gal(1) staining did not appear to be affected by dorsal rhizotomy. Taken together, these findings provide strong evidence that Gal(1) is a heteroreceptor expressed on excitatory glutamatergic dorsal horn interneurons. Activation of such Gal(1) receptors may thus decrease the inhibitory tone in the superficial dorsal horn, and possibly cause antinociception.


Assuntos
Galanina/metabolismo , Ácido Glutâmico/metabolismo , Interneurônios/metabolismo , Células do Corno Posterior/metabolismo , Receptor Tipo 1 de Galanina/metabolismo , Transmissão Sináptica/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glutamato Descarboxilase/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Interneurônios/citologia , Isoenzimas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Inibição Neural/fisiologia , Nociceptores/fisiologia , Dor/metabolismo , Dor/fisiopatologia , Células do Corno Posterior/citologia , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Galanina/genética , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo
20.
J Physiol ; 570(Pt 3): 525-40, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16308350

RESUMO

The cholinergic modulation of the electrical properties of spinal motoneurones was investigated in vitro, with the use of the whole-cell patch-clamp recording technique in lumbar spinal cord slices from juvenile urodeles (Pleurodeles waltlii). Bath application of acetylcholine (20 microM) with eserine (20 microM) induced an increase in the resting membrane potential, a decrease of the input resistance, a decrease of the action potential amplitude, and a reduction of the medium afterhyperpolarization (mAHP) that followed each action potential. Moreover, the firing rate of motoneurones during a depolarizing current pulse and the slope of their stimulus current-spike frequency relation were increased. All of these effects were mimicked by extracellular application of muscarine (20 microM), and blocked by application of the muscarinic receptor antagonist atropine (0.1-1 microM). They were not observed during bath application of nicotine (10 microM). These results suggest that the cholinergic modulation of spinal motoneurone excitability was mediated by activation of muscarinic receptors. Our results further show that the muscarinic action primarily resulted from a reduction of the Ca2+-activated K+ current responsible for the mAHP, an inhibition of the hyperpolarization-activated cation current, Ih, and an enhancement of the inward rectifying K+ current, I(Kir). We conclude that cholinergic modulation can contribute significantly to the production of motor behaviour by altering several ionic conductances responsible for the repetitive discharge of motoneurones.


Assuntos
Acetilcolina/fisiologia , Fibras Colinérgicas/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/citologia , Medula Espinal/fisiologia , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Fibras Colinérgicas/efeitos dos fármacos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/ultraestrutura , Muscarina/farmacologia , Agonistas Muscarínicos/farmacologia , Técnicas de Patch-Clamp , Pleurodeles , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Receptores Muscarínicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...