Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 87(15): 156103, 2001 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-11580713

RESUMO

High-resolution specular x-ray reflectivity of the mica(001)-water interface under ambient conditions reveals oscillations in water oxygen density in the surface-normal direction, giving evidence of interfacial water ordering. The spacings between neighboring water layers in the near-surface, strongly oscillatory region are 2.5(2)-2.7(2) A, approximately the size of the water molecule. The density oscillations extend to about 10 A above the surface and do not strictly maintain a solvent-size periodicity as that in interfacial liquid metal and hard-sphere molecular liquids. We interpret this oscillatory density profile of the interfacial water as due to the "hard-wall" effect of the molecularly smooth mica surface.

2.
Environ Sci Technol ; 35(22): 4481-6, 2001 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-11757605

RESUMO

Caustic NaNO3 solutions containing dissolved Al were reacted with quartz sand at 89 degrees C to simulate possible reactions between leaked nuclear waste and primary subsurface minerals at the U.S. Department of Energy's Hanford site in Washington. Nitrate-cancrinite began to precipitate onto the quartz after 2-10 days, cementing the grains together. Estimates of the equilibrium constant for the precipitation reaction differ for solutions with 0.1 or 1.0 m OH- (log Keq = 30.4 +/- 0.8 and 36.2 +/- 0.6, respectively). The difference in solubility may be attributable to more perfect crystallinity (i.e., fewer stacking faults) in the higher-pH cancrinite structure. This is supported by electron micrographs of crystal morphology and measured rates of Na volatilization under an electron beam. Precipitate crystallinity may affect radionuclide mobility, because stacking faults in the cancrinite structure can diminish its zeolitic cation exchange properties. The precipitation rate near the onset of nucleation depends on the total Al and Si concentrations in solution. The evolution of experimental Si concentrations was modeled by considering the dependence of quartz dissolution rate on AI(OH)4- activity, cancrinite precipitation, and the reduction of reactive surface area of quartz due to coverage by cancrinite.


Assuntos
Nitratos/química , Quartzo/química , Resíduos Radioativos , Alumínio/química , Precipitação Química , Concentração de Íons de Hidrogênio , Modelos Químicos , Dióxido de Silício/química , Solubilidade , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA