Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38138001

RESUMO

A novel cellulose microfibril swelling (Cms) gene of Bacillus sp. AY8 was successfully cloned and sequenced using a set of primers designed based on the conserved region of the gene from the genomic database. The molecular cloning of the Cms gene revealed that the gene consisted of 679 bp sequences encoding 225 amino acids. Further in silico analysis unveiled that the Cms gene contained the NlpC/P60 conserved region that exhibited a homology of 98% with the NlpC/P60 family proteins found in both the strains, Burkholderialata sp. and Burkholderia vietnamiensis. The recombinant Cms enzyme had a significant impact on the reduction of crystallinity indices (CrI) of various substrates including a 3%, a 3.97%, a 4.66%, and a substantial 14.07% for filter paper, defatted cotton fiber, avicel, and alpha cellulose, respectively. Additionally, notable changes in the spectral features were observed among the substrates treated with recombinant Cms enzymes compared to the untreated control. Specifically, there was a decrease in band intensities within the spectral regions of 3000-3450 cm-1, 2900 cm-1, 1429 cm-1, and 1371 cm-1 for the treated filter paper, cotton fiber, avicel, and alpha cellulose, respectively. Furthermore, the recombinant Cms enzyme exhibited a maximum cellulose swelling activity at a pH of 7.0 along with a temperature of 40 °C. The molecular docking data revealed that ligand molecules, such as cellobiose, dextrin, maltose 1-phosphate, and feruloyated xyloglucan, effectively bonded to the active site of the Cms enzyme. The molecular dynamics simulations of the Cms enzyme displayed stable interactions with cellobiose and dextrin molecules up to 100 ns. It is noteworthy to mention that the conserved region of the Cms enzyme did not match with those of the bioadditives like expansins and swollenin proteins. This study is the initial report of a bacterial cellulose microfibril swellase enzyme, which could potentially serve as an additive to enhance biofuel production by releasing fermentable sugars from cellulose.

2.
Microorganisms ; 11(7)2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37512993

RESUMO

Eighteen pesticide-degrading endophytic bacteria were isolated from the roots, stems, and leaves of healthy rice plants and identified through 16S rRNA gene sequencing. Furthermore, biochemical properties, including enzyme production, dye degradation, anti-bacterial activities, plant-growth-promoting traits, including N-fixation, P-solubilization, auxin production, and ACC-deaminase activities of these naturally occurring endophytic bacteria along with their four consortia, were characterized. Enterobacter cloacae HSTU-ABk39 and Enterobacter sp. HSTU-ABk36 displayed inhibition zones of 41.5 ± 1.5 mm, and 29 ± 09 mm against multidrug-resistant human pathogenic bacteria Staphylococcus aureus and Staphylococcus epidermidis, respectively. FT-IR analysis revealed that all eighteen isolates were able to degrade chlorpyrifos pesticide. Our study confirms that pesticide-degrading endophytic bacteria from rice plants play a key role in enhancing plant growth. Notably, rice plants grown in pots containing reduced urea (30%) mixed with either endophytic bacterial consortium-1, consortium-2, consortium-3, or consortia-4 demonstrated an increase of 17.3%, 38.6%, 18.2%, and 39.1% yields, respectively, compared to the control plants grown in pots containing 100% fertilizer. GC-MS/MS analysis confirmed that consortia treatment caused the degradation of chlorpyrifos into different non-toxic metabolites, including 2-Hydroxy-3,5,6 trichloropyridine, Diethyl methane phosphonate, Phorate sulfoxide, and Carbonochloridic. Thus, these isolates could be deployed as bio-stimulants to improve crop production by creating a sustainable biological system.

3.
Arch Microbiol ; 204(3): 199, 2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35220488

RESUMO

This study was aimed to evaluate eggplant's growth-enhancing activity of chlorpyrifos and diazinon-degrading endophytic and rhizospheric soil bacteria isolated from cauliflower and tomato roots and the rhizospheric soil of rice roots, respectively. The identified endophytes belong to the Acinetobacter, Enterobacter and Klebsiella genera, while rhizospheric soil isolates belong to Pantoea, Acinetobacter, Kosakonia, Morganella, Enterobacter, and Klebsiella genera with species variation and genetic distances. All the strain's consumed 100% (50 mg/5 mL) chlorpyrifos and diazinon after 14 days of exposure, except for Pantoea sp. HSTU-Sny4 (84%) and Kosakonia sp. HSTU-ASn39 (42%). The strain's exhibited N-fixation, P-solubilization, indole-3-acetic acid (IAA), and ACC-deaminase production capabilities. The individual strain's and consortium treatment enhanced eggplant growth at germination, seedling, vegetative and reproductive stages. Plant growth-promoting genes, e.g., nif-cluster, chemotaxis, phosphates, sulfur, abiotic stress, chemotaxis, biofilm formation and organophosphorus insecticide-degrading genes were annotated in Klebsiella sp. HSTU-Sny5 and Morganella sp. HSTU-ASny43 genomes. Importantly, the mixed consortium supplemented with 40% urea-treated eggplants demonstrated similar growth parameters compared to the 100% urea eggplants. Plenty of insecticide-degrading proteins belonged to HSTU-Sny5 and HSTU-ASny43 strain's and had interacted with 100 different insecticides as confirmed in virtual screening. This research has a significant role in reducing the application of chemical fertilizer and bioremediation of pesticides in agriculture.


Assuntos
Inseticidas , Solanum melongena , Endófitos , Inseticidas/metabolismo , Inseticidas/farmacologia , Compostos Organofosforados/metabolismo , Raízes de Plantas/microbiologia , Solo , Solanum melongena/metabolismo
4.
Plant Physiol ; 178(1): 441-450, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30037808

RESUMO

The phenolic hormone salicylic acid (SA) induces stomatal closure. It has been suggested that SA signaling is integrated with abscisic acid (ABA) signaling in guard cells, but the integration mechanism remains unclear. The Ca2+-independent protein kinase Open Stomata1 (OST1) and Ca2+-dependent protein kinases (CPKs) are key for ABA-induced activation of the slow-type anion channel SLAC1 and stomatal closure. Here, we show that SA-induced stomatal closure and SA activation of slow-type anion channel are impaired in the CPK disruption mutant cpk3-2 cpk6-1 but not in the OST1 disruption mutant ost1-3 We also found that the key phosphorylation sites of SLAC1 in ABA signaling, serine-59 and serine-120, also are important for SA signaling. Chemiluminescence-based detection of superoxide anion revealed that SA did not require CPK3 and CPK6 for the induction of reactive oxygen species production. Taken together, our results suggest that SA activates peroxidase-mediated reactive oxygen species signal that is integrated into Ca2+/CPK-dependent ABA signaling branch but not the OST1-dependent signaling branch in Arabidopsis (Arabidopsis thaliana) guard cells.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Ácido Abscísico/farmacologia , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/farmacologia
5.
Biosci Biotechnol Biochem ; 81(9): 1726-1731, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28622092

RESUMO

Arsenic causes physiological and structural disorders in plants. Proline is accumulated as a compatible solute in plants under various stress conditions and mitigates stresses. Here, we investigated the effects of exogenous proline on tobacco Bright Yellow-2 (BY-2) cultured cells under [Formula: see text] stress. Arsenate did not inhibit BY-2 cell growth at 40 and 50 µM but did it at 60 µM. Proline at 0.5 to 10 mM did not affect the cell growth but delayed it at 20 mM. At 40 µM [Formula: see text], neither 0.5 mM nor 1 mM proline affected the cell growth but 10 mM proline inhibited it. In the presence of [Formula: see text], 10 mM proline increased the number of Evans Blue-stained (dead) cells and decreased the number of total cells. Together, our results suggest that exogenous proline does not alleviate arsenate toxicity but enhances the sensitivity of BY-2 cells to arsenate.


Assuntos
Arseniatos/toxicidade , Poluentes Ambientais/toxicidade , Nicotiana/citologia , Prolina/farmacologia , Contagem de Células , Morte Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...