Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Behav Res Methods ; 56(3): 2292-2310, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37369940

RESUMO

The sensation of self-motion in the absence of physical motion, known as vection, has been scientifically investigated for over a century. As objective measures of, or physiological correlates to, vection have yet to emerge, researchers have typically employed a variety of subjective methods to quantify the phenomenon of vection. These measures can be broadly categorized into the occurrence of vection (e.g., binary choice yes/no), temporal characteristics of vection (e.g., onset time/latency, duration), the quality of the vection experience (e.g., intensity rating scales, magnitude estimation), or indirect (e.g., distance travelled) measures. The present review provides an overview and critical evaluation of the most utilized vection measures to date and assesses their respective merit. Furthermore, recommendations for the selection of the most appropriate vection measures will be provided to assist with the process of vection research and to help improve the comparability of research findings across different vection studies.


Assuntos
Ilusões , Percepção de Movimento , Humanos , Percepção de Movimento/fisiologia , Ilusões/fisiologia , Movimento (Física)
2.
R Soc Open Sci ; 10(4): 221622, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37063997

RESUMO

The feeling of self-movement that occurs in the absence of physical motion is often referred to as vection, which is commonly exemplified using the train illusion analogy (TIA). Limited research exists on whether the TIA accurately exemplifies the experience of vection in virtual environments (VEs). Few studies complemented their vection research with participants' qualitative feedback or by recording physiological responses, and most studies used stimuli that contextually differed from the TIA. We investigated whether vection is experienced differently in a VE replicating the TIA compared to a VE depicting optic flow by recording subjective and physiological responses. Additionally, we explored participants' experience through an open question survey. We expected the TIA environment to induce enhanced vection compared to the optic flow environment. Twenty-nine participants were visually and audibly immersed in VEs that either depicted optic flow or replicated the TIA. Results showed optic flow elicited more compelling vection than the TIA environment and no consistent physiological correlates to vection were identified. The post-experiment survey revealed discrepancies between participants' quantitative and qualitative feedback. Although the dynamic content may outweigh the ecological relevance of the stimuli, it was concluded that more qualitative research is needed to understand participants' vection experience in VEs.

3.
Comput Biol Med ; 158: 106841, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028142

RESUMO

Invasive angiography is the reference standard for coronary artery disease (CAD) diagnosis but is expensive and associated with certain risks. Machine learning (ML) using clinical and noninvasive imaging parameters can be used for CAD diagnosis to avoid the side effects and cost of angiography. However, ML methods require labeled samples for efficient training. The labeled data scarcity and high labeling costs can be mitigated by active learning. This is achieved through selective query of challenging samples for labeling. To the best of our knowledge, active learning has not been used for CAD diagnosis yet. An Active Learning with Ensemble of Classifiers (ALEC) method is proposed for CAD diagnosis, consisting of four classifiers. Three of these classifiers determine whether a patient's three main coronary arteries are stenotic or not. The fourth classifier predicts whether the patient has CAD or not. ALEC is first trained using labeled samples. For each unlabeled sample, if the outputs of the classifiers are consistent, the sample along with its predicted label is added to the pool of labeled samples. Inconsistent samples are manually labeled by medical experts before being added to the pool. The training is performed once more using the samples labeled so far. The interleaved phases of labeling and training are repeated until all samples are labeled. Compared with 19 other active learning algorithms, ALEC combined with a support vector machine classifier attained superior performance with 97.01% accuracy. Our method is justified mathematically as well. We also comprehensively analyze the CAD dataset used in this paper. As part of dataset analysis, features pairwise correlation is computed. The top 15 features contributing to CAD and stenosis of the three main coronary arteries are determined. The relationship between stenosis of the main arteries is presented using conditional probabilities. The effect of considering the number of stenotic arteries on sample discrimination is investigated. The discrimination power over dataset samples is visualized, assuming each of the three main coronary arteries as a sample label and considering the two remaining arteries as sample features.


Assuntos
Doença da Artéria Coronariana , Humanos , Doença da Artéria Coronariana/diagnóstico por imagem , Constrição Patológica , Algoritmos , Angiografia Coronária
4.
IEEE Trans Cybern ; 53(12): 7895-7905, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37022241

RESUMO

We consider the event-triggered state and disturbance simultaneous estimation problem for Lipschitz nonlinear systems with an unknown time-varying delay in the state vector. For the first time, state and disturbance can be robustly estimated by using an event-triggered state observer. Our method uses only information of the output vector when an event-triggered condition is satisfied. This contrasts with previous methods of simultaneous state and disturbance estimation based on augmented state observers where the information of the output vector was assumed to be always continuously available. This salient feature, thus, lessens the stress on communication resources while can still maintain an acceptable estimation performance. First, to solve the new problem of event-triggered state and disturbance estimation, and to tackle unknown time-varying delays, we propose a novel event-triggered state observer and establish a sufficient condition for its existence. Then to overcome some technical difficulties in synthesizing observer parameters, we introduce some algebraic transformations and use inequalities, such as the Cauchy matrix inequality and the Schur complement lemma to establish a convex optimization problem in which observer parameters and optimal disturbance attenuation levels can be systematically derived. Finally, we demonstrate the applicability of the method by using two numerical examples.

5.
Sensors (Basel) ; 23(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36772503

RESUMO

Continuous advancements of technologies such as machine-to-machine interactions and big data analysis have led to the internet of things (IoT) making information sharing and smart decision-making possible using everyday devices. On the other hand, swarm intelligence (SI) algorithms seek to establish constructive interaction among agents regardless of their intelligence level. In SI algorithms, multiple individuals run simultaneously and possibly in a cooperative manner to address complex nonlinear problems. In this paper, the application of SI algorithms in IoT is investigated with a special focus on the internet of medical things (IoMT). The role of wearable devices in IoMT is briefly reviewed. Existing works on applications of SI in addressing IoMT problems are discussed. Possible problems include disease prediction, data encryption, missing values prediction, resource allocation, network routing, and hardware failure management. Finally, research perspectives and future trends are outlined.


Assuntos
Internet das Coisas , Dispositivos Eletrônicos Vestíveis , Humanos , Algoritmos , Cognição , Inteligência , Internet
6.
Inf Fusion ; 90: 364-381, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36217534

RESUMO

The COVID-19 (Coronavirus disease 2019) pandemic has become a major global threat to human health and well-being. Thus, the development of computer-aided detection (CAD) systems that are capable of accurately distinguishing COVID-19 from other diseases using chest computed tomography (CT) and X-ray data is of immediate priority. Such automatic systems are usually based on traditional machine learning or deep learning methods. Differently from most of the existing studies, which used either CT scan or X-ray images in COVID-19-case classification, we present a new, simple but efficient deep learning feature fusion model, called U n c e r t a i n t y F u s e N e t , which is able to classify accurately large datasets of both of these types of images. We argue that the uncertainty of the model's predictions should be taken into account in the learning process, even though most of the existing studies have overlooked it. We quantify the prediction uncertainty in our feature fusion model using effective Ensemble Monte Carlo Dropout (EMCD) technique. A comprehensive simulation study has been conducted to compare the results of our new model to the existing approaches, evaluating the performance of competing models in terms of Precision, Recall, F-Measure, Accuracy and ROC curves. The obtained results prove the efficiency of our model which provided the prediction accuracy of 99.08% and 96.35% for the considered CT scan and X-ray datasets, respectively. Moreover, our U n c e r t a i n t y F u s e N e t model was generally robust to noise and performed well with previously unseen data. The source code of our implementation is freely available at: https://github.com/moloud1987/UncertaintyFuseNet-for-COVID-19-Classification.

7.
IEEE Trans Neural Netw Learn Syst ; 34(9): 6354-6367, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34971541

RESUMO

In this article, we propose a novel stochastic event-driven near-optimal sliding-mode controller design for addressing the consensus of a multiagent system in a network. The system is prone to external disturbances and network uncertainties, such as losses and delays of data packets. The randomness of network uncertainties introduces stochasticity in the system. The design starts with the formulation of control-affine dynamics based on a single integrator robot model, formation error, and sliding surface dynamics. An event-triggering condition is then derived for an update of control input for each agent. These input updates guarantee desired consensus in finite time with reaching time of each agent's sliding surface having an upper bound. The admissibility of event-driven near-optimal control updates is also ensured for each agent. The near-optimal control design for each agent has achieved through neural-network-based actor-critic architecture. The implementation of Pioneer P3-DX mobile robots illustrates threefold efficacy of the proposed design: 1) advantages of event-driven approach and higher order sliding mode controller; 2) robustness to network uncertainties; and 3) near-optimality in system performance.

8.
Sensors (Basel) ; 22(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36298284

RESUMO

Robotic manipulation refers to how robots intelligently interact with the objects in their surroundings, such as grasping and carrying an object from one place to another. Dexterous manipulating skills enable robots to assist humans in accomplishing various tasks that might be too dangerous or difficult to do. This requires robots to intelligently plan and control the actions of their hands and arms. Object manipulation is a vital skill in several robotic tasks. However, it poses a challenge to robotics. The motivation behind this review paper is to review and analyze the most relevant studies on learning-based object manipulation in clutter. Unlike other reviews, this review paper provides valuable insights into the manipulation of objects using deep reinforcement learning (deep RL) in dense clutter. Various studies are examined by surveying existing literature and investigating various aspects, namely, the intended applications, the techniques applied, the challenges faced by researchers, and the recommendations adopted to overcome these obstacles. In this review, we divide deep RL-based robotic manipulation tasks in cluttered environments into three categories, namely, object removal, assembly and rearrangement, and object retrieval and singulation tasks. We then discuss the challenges and potential prospects of object manipulation in clutter. The findings of this review are intended to assist in establishing important guidelines and directions for academics and researchers in the future.


Assuntos
Robótica , Humanos , Robótica/métodos , Força da Mão , Mãos , Extremidade Superior
9.
Artigo em Inglês | MEDLINE | ID: mdl-36279341

RESUMO

Uncertainty quantification (UQ) for predictions generated by neural networks (NNs) is of vital importance in safety-critical applications. An ideal model is supposed to generate low uncertainty for correct predictions and high uncertainty for incorrect predictions. The main focus of state-of-the-art training algorithms is to optimize the NN parameters to improve the accuracy-related metrics. Training based on uncertainty metrics has been fully ignored or overlooked in the literature. This article introduces a novel uncertainty-aware training algorithm for classification tasks. A novel predictive uncertainty estimate-based objective function is defined and optimized using the stochastic gradient descent method. This new multiobjective loss function covers both accuracy and uncertainty accuracy (UA) simultaneously during training. The performance of the proposed training framework is compared from different aspects with other UQ techniques for different benchmarks. The obtained results demonstrate the effectiveness of the proposed framework for developing the NN models capable of generating reliable uncertainty estimates.

10.
Comput Biol Med ; 149: 106053, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108415

RESUMO

Epilepsy is a disorder of the brain denoted by frequent seizures. The symptoms of seizure include confusion, abnormal staring, and rapid, sudden, and uncontrollable hand movements. Epileptic seizure detection methods involve neurological exams, blood tests, neuropsychological tests, and neuroimaging modalities. Among these, neuroimaging modalities have received considerable attention from specialist physicians. One method to facilitate the accurate and fast diagnosis of epileptic seizures is to employ computer-aided diagnosis systems (CADS) based on deep learning (DL) and neuroimaging modalities. This paper has studied a comprehensive overview of DL methods employed for epileptic seizures detection and prediction using neuroimaging modalities. First, DL-based CADS for epileptic seizures detection and prediction using neuroimaging modalities are discussed. Also, descriptions of various datasets, preprocessing algorithms, and DL models which have been used for epileptic seizures detection and prediction have been included. Then, research on rehabilitation tools has been presented, which contains brain-computer interface (BCI), cloud computing, internet of things (IoT), hardware implementation of DL techniques on field-programmable gate array (FPGA), etc. In the discussion section, a comparison has been carried out between research on epileptic seizure detection and prediction. The challenges in epileptic seizures detection and prediction using neuroimaging modalities and DL models have been described. In addition, possible directions for future works in this field, specifically for solving challenges in datasets, DL, rehabilitation, and hardware models, have been proposed. The final section is dedicated to the conclusion which summarizes the significant findings of the paper.


Assuntos
Aprendizado Profundo , Epilepsia , Algoritmos , Eletroencefalografia/métodos , Epilepsia/diagnóstico por imagem , Humanos , Neuroimagem , Convulsões/diagnóstico por imagem
11.
Sci Rep ; 12(1): 11178, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778476

RESUMO

Coronary artery disease (CAD) is a prevalent disease with high morbidity and mortality rates. Invasive coronary angiography is the reference standard for diagnosing CAD but is costly and associated with risks. Noninvasive imaging like cardiac magnetic resonance (CMR) facilitates CAD assessment and can serve as a gatekeeper to downstream invasive testing. Machine learning methods are increasingly applied for automated interpretation of imaging and other clinical results for medical diagnosis. In this study, we proposed a novel CAD detection method based on CMR images by utilizing the feature extraction ability of deep neural networks and combining the features with the aid of a random forest for the very first time. It is necessary to convert image data to numeric features so that they can be used in the nodes of the decision trees. To this end, the predictions of multiple stand-alone convolutional neural networks (CNNs) were considered as input features for the decision trees. The capability of CNNs in representing image data renders our method a generic classification approach applicable to any image dataset. We named our method RF-CNN-F, which stands for Random Forest with CNN Features. We conducted experiments on a large CMR dataset that we have collected and made publicly accessible. Our method achieved excellent accuracy (99.18%) using Adam optimizer compared to a stand-alone CNN trained using fivefold cross validation (93.92%) tested on the same dataset.


Assuntos
Doença da Artéria Coronariana , Doença da Artéria Coronariana/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Redes Neurais de Computação
12.
Contrast Media Mol Imaging ; 2022: 8733632, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35833074

RESUMO

Myocarditis is heart muscle inflammation that is becoming more prevalent these days, especially with the prevalence of COVID-19. Noninvasive imaging cardiac magnetic resonance (CMR) can be used to diagnose myocarditis, but the interpretation is time-consuming and requires expert physicians. Computer-aided diagnostic systems can facilitate the automatic screening of CMR images for triage. This paper presents an automatic model for myocarditis classification based on a deep reinforcement learning approach called as reinforcement learning-based myocarditis diagnosis combined with population-based algorithm (RLMD-PA) that we evaluated using the Z-Alizadeh Sani myocarditis dataset of CMR images prospectively acquired at Omid Hospital, Tehran. This model addresses the imbalanced classification problem inherent to the CMR dataset and formulates the classification problem as a sequential decision-making process. The policy of architecture is based on convolutional neural network (CNN). To implement this model, we first apply the artificial bee colony (ABC) algorithm to obtain initial values for RLMD-PA weights. Next, the agent receives a sample at each step and classifies it. For each classification act, the agent gets a reward from the environment in which the reward of the minority class is greater than the reward of the majority class. Eventually, the agent finds an optimal policy under the guidance of a particular reward function and a helpful learning environment. Experimental results based on standard performance metrics show that RLMD-PA has achieved high accuracy for myocarditis classification, indicating that the proposed model is suitable for myocarditis diagnosis.


Assuntos
COVID-19 , Miocardite , Algoritmos , COVID-19/diagnóstico por imagem , Humanos , Irã (Geográfico) , Miocardite/diagnóstico por imagem , Miocardite/patologia , Redes Neurais de Computação
13.
Comput Biol Med ; 146: 105554, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569333

RESUMO

Schizophrenia (SZ) is a mental disorder that typically emerges in late adolescence or early adulthood. It reduces the life expectancy of patients by 15 years. Abnormal behavior, perception of emotions, social relationships, and reality perception are among its most significant symptoms. Past studies have revealed that SZ affects the temporal and anterior lobes of hippocampus regions of the brain. Also, increased volume of cerebrospinal fluid (CSF) and decreased volume of white and gray matter can be observed due to this disease. Magnetic resonance imaging (MRI) is the popular neuroimaging technique used to explore structural/functional brain abnormalities in SZ disorder, owing to its high spatial resolution. Various artificial intelligence (AI) techniques have been employed with advanced image/signal processing methods to accurately diagnose SZ. This paper presents a comprehensive overview of studies conducted on the automated diagnosis of SZ using MRI modalities. First, an AI-based computer aided-diagnosis system (CADS) for SZ diagnosis and its relevant sections are presented. Then, this section introduces the most important conventional machine learning (ML) and deep learning (DL) techniques in the diagnosis of diagnosing SZ. A comprehensive comparison is also made between ML and DL studies in the discussion section. In the following, the most important challenges in diagnosing SZ are addressed. Future works in diagnosing SZ using AI techniques and MRI modalities are recommended in another section. Results, conclusion, and research findings are also presented at the end.


Assuntos
Esquizofrenia , Adolescente , Adulto , Inteligência Artificial , Encéfalo , Substância Cinzenta , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/métodos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia
14.
Expert Syst Appl ; 201: 116942, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35378906

RESUMO

Radiological methodologies, such as chest x-rays and CT, are widely employed to help diagnose and monitor COVID-19 disease. COVID-19 displays certain radiological patterns easily detectable by X-rays of the chest. Therefore, radiologists can investigate these patterns for detecting coronavirus disease. However, this task is time-consuming and needs lots of trial and error. One of the main solutions to resolve this issue is to apply intelligent techniques such as deep learning (DL) models to automatically analyze the chest X-rays. Nevertheless, fine-tuning of architecture and hyperparameters of DL models is a complex and time-consuming procedure. In this paper, we propose an effective method to detect COVID-19 disease by applying convolutional neural network (CNN) to the chest X-ray images. To improve the accuracy of the proposed method, the last Softmax CNN layer is replaced with a K -nearest neighbors (KNN) classifier which takes into account the agreement of the neighborhood labeling. Moreover, we develop a novel evolutionary algorithm by improving the basic version of competitive swarm optimizer. To this end, three powerful evolutionary operators: Cauchy Mutation (CM), Evolutionary Boundary Constraint Handling (EBCH), and tent chaotic map are incorporated into the search process of the proposed evolutionary algorithm to speed up its convergence and make an excellent balance between exploration and exploitation phases. Then, the proposed evolutionary algorithm is used to automatically achieve the optimal values of CNN's hyperparameters leading to a significant improvement in the classification accuracy of the proposed method. Comprehensive comparative results reveal that compared with current models in the literature, the proposed method performs significantly more efficient.

15.
Comput Biol Med ; 144: 105357, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35259615

RESUMO

Artificial intelligence (AI)-based medical diagnosis has received huge attention due to its potential to improve and accelerate the decision-making process at the patient level in a range of healthcare settings. Despite the recent signs of progress in this field, reliable quantification and proper communication of predictive uncertainties have been fully or partially overlooked in the existing literature on AI applications for medical diagnosis. This paper studies the automatic diagnosis of skin cancer using dermatologist spot images. Three different uncertainty-aware training algorithms (MC dropout, Bayesian Ensembling, and Spectral Normalized Neural Gaussian Process) are utilized to detect skin cancer. The performances of the three above-mentioned algorithms are compared from different perspectives. In addition, some images from the Cifar10 dataset are applied as the out-of-domain data and the performances of the algorithms are evaluated and compared for images that are far from the training samples. The accuracy, uncertainty accuracy, uncertainty accuracy for out-of-domain distribution samples, and the uncertainties of the predictions are reported in all cases and compared.


Assuntos
Inteligência Artificial , Neoplasias Cutâneas , Algoritmos , Teorema de Bayes , Humanos , Método de Monte Carlo , Redes Neurais de Computação , Neoplasias Cutâneas/diagnóstico , Incerteza
16.
Comput Biol Med ; 143: 105246, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35131610

RESUMO

The user does not have any idea about the credibility of outcomes from deep neural networks (DNN) when uncertainty quantification (UQ) is not employed. However, current Deep UQ classification models capture mostly epistemic uncertainty. Therefore, this paper aims to propose an aleatory-aware Deep UQ method for classification problems. First, we train DNNs through transfer learning and collect numeric output posteriors for all training samples instead of logical outputs. Then we determine the probability of happening a certain class from K-nearest output posteriors of the same DNN in training samples. We name this probability as opacity score, as the paper focuses on the detection of opacity on X-ray images. This score reflects the level of aleatory on the sample. When the NN is certain on the classification of the sample, the probability of happening a class becomes much higher than the probabilities of others. Probabilities for different classes become close to each other for a highly uncertain classification outcome. To capture the epistemic uncertainty, we train multiple DNNs with different random initializations, model selection, and augmentations to observe the effect of these training parameters on prediction and uncertainty. To reduce execution time, we first obtain features from the pre-trained NN. Then we apply features to the ensemble of fully connected layers to get the distribution of opacity score during the test. We also train several ResNet and DenseNet DNNs to observe the effect of model selection on prediction and uncertainty. The paper also demonstrates a patient referral framework based on the proposed uncertainty quantification. The scripts of the proposed method are available at the following link: https://github.com/dipuk0506/Aleatory-aware-UQ.

17.
Immun Inflamm Dis ; 10(3): e561, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35048534

RESUMO

INTRODUCTION: To reduce mortality in hospitalized patients with COVID-19 and cardiovascular disease (CVD), it is necessary to understand the relationship between patient's symptoms, risk factors, and comorbidities with their mortality rate. To the best of our knowledge, this paper is the first which take into account the determinants like risk factors, symptoms, and comorbidities leading to mortality in CVD patients who are hospitalized with COVID-19. METHODS: This study was conducted on 660 hospitalized patients with CVD and COVID-19 recruited between January 2020 and January 2021 in Iran. All patients were diagnosed with the previous history of CVD like angina, myocardial infarction, heart failure, cardiomyopathy, abnormal heart rhythms, and congenital heart disease before they were hospitalized for COVID-19. We collected data on patient's signs and symptoms, clinical and paraclinical examinations, and any underlying comorbidities. t test was used to determine the significant difference between the two deceased and alive groups. In addition, the relation between pairs of symptoms and pairs of comorbidities has been determined via correlation computation. RESULTS: Our findings suggest that signs and symptoms such as fever, cough, myalgia, chest pain, chills, abdominal pain, nausea, vomiting, diarrhea, and anorexia had no impact on patients' mortality. There was a significant correlation between COVID-19 cardiovascular patients' mortality rate and symptoms such as headache, loss of consciousness (LOC), oxygen saturation less than 93%, and need for mechanical ventilation. CONCLUSIONS: Our results might help physicians identify early symptoms, comorbidities, and risk factors related to mortality in CVD patients hospitalized for COVID-19.


Assuntos
COVID-19 , Doenças Cardiovasculares , Comorbidade , Humanos , Fatores de Risco , SARS-CoV-2
18.
Sci Rep ; 12(1): 815, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039620

RESUMO

Deep neural networks (DNNs) have been widely applied for detecting COVID-19 in medical images. Existing studies mainly apply transfer learning and other data representation strategies to generate accurate point estimates. The generalization power of these networks is always questionable due to being developed using small datasets and failing to report their predictive confidence. Quantifying uncertainties associated with DNN predictions is a prerequisite for their trusted deployment in medical settings. Here we apply and evaluate three uncertainty quantification techniques for COVID-19 detection using chest X-Ray (CXR) images. The novel concept of uncertainty confusion matrix is proposed and new performance metrics for the objective evaluation of uncertainty estimates are introduced. Through comprehensive experiments, it is shown that networks pertained on CXR images outperform networks pretrained on natural image datasets such as ImageNet. Qualitatively and quantitatively evaluations also reveal that the predictive uncertainty estimates are statistically higher for erroneous predictions than correct predictions. Accordingly, uncertainty quantification methods are capable of flagging risky predictions with high uncertainty estimates. We also observe that ensemble methods more reliably capture uncertainties during the inference. DNN-based solutions for COVID-19 detection have been mainly proposed without any principled mechanism for risk mitigation. Previous studies have mainly focused on on generating single-valued predictions using pretrained DNNs. In this paper, we comprehensively apply and comparatively evaluate three uncertainty quantification techniques for COVID-19 detection using chest X-Ray images. The novel concept of uncertainty confusion matrix is proposed and new performance metrics for the objective evaluation of uncertainty estimates are introduced for the first time. Using these new uncertainty performance metrics, we quantitatively demonstrate when we could trust DNN predictions for COVID-19 detection from chest X-rays. It is important to note the proposed novel uncertainty evaluation metrics are generic and could be applied for evaluation of probabilistic forecasts in all classification problems.


Assuntos
COVID-19/diagnóstico por imagem , Aprendizado Profundo , Tórax/diagnóstico por imagem , Humanos
19.
IEEE Trans Biomed Eng ; 69(2): 818-829, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34460359

RESUMO

Breast histology image classification is a crucial step in the early diagnosis of breast cancer. In breast pathological diagnosis, Convolutional Neural Networks (CNNs) have demonstrated great success using digitized histology slides. However, tissue classification is still challenging due to the high visual variability of the large-sized digitized samples and the lack of contextual information. In this paper, we propose a novel CNN, called Multi-level Context and Uncertainty aware (MCUa) dynamic deep learning ensemble model. MCUa model consists of several multi-level context-aware models to learn the spatial dependency between image patches in a layer-wise fashion. It exploits the high sensitivity to the multi-level contextual information using an uncertainty quantification component to accomplish a novel dynamic ensemble model. MCUa model has achieved a high accuracy of 98.11% on a breast cancer histology image dataset. Experimental results show the superior effectiveness of the proposed solution compared to the state-of-the-art histology classification models.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico por imagem , Feminino , Técnicas Histológicas , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Incerteza
20.
Soft Robot ; 9(4): 680-689, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34297904

RESUMO

A compliant three-dimensional (3D)-printed soft gripper is designed based on the bioinspired spiral spring in this study. The soft gripper is then 3D-printed using a suitable thermoplastic filament material to deliver the desired performance. The sensorless mechanism introduced in this study provides adequate compliance with a single linear actuator for interacting with delicate objects, such as manipulation of human biological materials and fruit picking. The kinematic and dynamic models of the monolithic gripper are derived analytically as well as by means of finite element analysis to synthesize its functionality. The fabricated gripper module is installed on a robot arm to demonstrate the efficacy of design for picking and placing fruits without damaging them. The presented mechanism could be customized and used in the medical and agricultural sectors with diverse geometry objects.


Assuntos
Robótica , Desenho de Equipamento , Análise de Elementos Finitos , Humanos , Impressão Tridimensional , Robótica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...