Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 247: 1009-1019, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30823329

RESUMO

Transformation of organic microcontaminants (OMCs) during wastewater treatments results in the generation of transformation products (TPs), which can be more persistent than parent compounds. Due to reuse of reclaimed wastewater (RWW) for crop irrigation, OMCs and TPs are released in soils being capable to translocate to crops. Furthermore, OMCs are also susceptible to transformation once they reach the soil or crops. The recalcitrant antiepileptic carbamazepine (CBZ) and some of its frequently reported TPs have been found in agricultural systems. However, there is no knowledge about the fate in reuse practices of multiple CBZ TPs that can be formed during wastewater treatment processes. For the first time, this work presents a study of the behavior of CBZ TPs generated after a conventional Ultraviolet-C (UVC) treatment in an agricultural environment. The UVC-treated water was used for the irrigation of lettuces grown under controlled conditions. The latter was compared to the fate of TPs generated in the peat and plant by irrigation with non-treated water containing CBZ. A suspect screening strategy was developed to identify the TPs using liquid chromatography coupled to quadrupole-time-of-flight (LC-QTOF-MS). The results revealed the presence of 24 TPs, 22 in UVC-treated water, 11 in peat and 9 in lettuce leaves. 4 of the TPs identified in peat (iminostilbene, TP 271B, TP 285A-B); and 3 in leaves (10-11 dihydrocarbamazepine, TP 271A-B) were not previously reported in soils or edible parts of crops, respectively. Comparing the TPs found in peat and lettuces derived from both irrigation conditions, no significant differences regarding TPs formation or occurrence were observed. UVC treatment did not contribute to the formation of different TPs than those generated by transformation or metabolism of CBZ in peat or plant material. This research improves the current knowledge on the fate of CBZ TPs in agricultural systems because of reuse practices.


Assuntos
Carbamazepina/metabolismo , Produtos Agrícolas/metabolismo , Lactuca/metabolismo , Poluentes do Solo/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismo , Purificação da Água/métodos , Irrigação Agrícola , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...