Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 26(20): 26422-26443, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469730

RESUMO

Microring weight banks present novel opportunities for reconfigurable, high-performance analog signal processing in photonics. Controlling microring filter response is a challenge due to fabrication variations and thermal sensitivity. Prior work showed continuous weight control of multiple wavelength-division multiplexed signals in a bank of microrings based on calibration and feedforward control. Other prior work has shown resonance locking based on feedback control by monitoring photoabsorption-induced changes in resistance across in-ring photoconductive heaters. In this work, we demonstrate continuous, multi-channel control of a microring weight bank with an effective 5.1 bits of accuracy on 2Gbps signals. Unlike resonance locking, the approach relies on an estimate of filter transmission versus photo-induced resistance changes. We introduce an estimate still capable of providing 4.2 bits of accuracy without any direct transmission measurements. Furthermore, we present a detailed characterization of this response for different values of carrier wavelength offset and power. Feedback weight control renders tractable the weight control problem in reconfigurable analog photonic networks.

2.
Opt Lett ; 43(15): 3802-3805, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067683

RESUMO

Neocortical systems encode information in electrochemical spike timings, not just mean firing rates. Learning and memory in networks of spiking neurons is achieved by the precise timing of action potentials that induces synaptic strengthening (with excitation) or weakening (with inhibition). Inhibition should be incorporated into brain-inspired spike processing in the optical domain to enhance its information-processing capability. We demonstrate the simultaneous excitatory and inhibitory dynamics in an excitable (i.e., a pulsed) laser neuron, both numerically and experimentally. We investigate the bias strength effect, inhibitory strength effect, and excitatory and inhibitory input timing effect, based on the simulation platform of an integrated graphene excitable laser. We further corroborate these analyses with proof-of-principle experiments utilizing a fiber-based graphene excitable laser, where we introduce inhibition by directly modulating the gain of the laser. This technology may potentially open novel spike-processing functionality for future neuromorphic photonic systems.


Assuntos
Fenômenos Eletrofisiológicos/efeitos da radiação , Lasers , Modelos Neurológicos , Neocórtex/citologia , Neocórtex/fisiologia , Neocórtex/efeitos da radiação , Neurônios/citologia , Neurônios/efeitos da radiação , Fatores de Tempo
3.
Opt Lett ; 43(10): 2276-2279, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762571

RESUMO

Weighted addition is an elemental multi-input to single-output operation that can be implemented with high-performance photonic devices. Microring (MRR) weight banks bring programmable weighted addition to silicon photonics. Prior work showed that their channel limits are affected by coherent inter-channel effects that occur uniquely in weight banks. We fabricate two-pole designs that exploit this inter-channel interference in a way that is robust to dynamic tuning and fabrication variation. Scaling analysis predicts a channel count improvement of 3.4-fold, which is substantially greater than predicted by incoherent analysis used in conventional MRR devices. Advances in weight bank design expand the potential of reconfigurable analog photonic networks and multivariate microwave photonics.

4.
Sci Rep ; 7(1): 7430, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28784997

RESUMO

Photonic systems for high-performance information processing have attracted renewed interest. Neuromorphic silicon photonics has the potential to integrate processing functions that vastly exceed the capabilities of electronics. We report first observations of a recurrent silicon photonic neural network, in which connections are configured by microring weight banks. A mathematical isomorphism between the silicon photonic circuit and a continuous neural network model is demonstrated through dynamical bifurcation analysis. Exploiting this isomorphism, a simulated 24-node silicon photonic neural network is programmed using "neural compiler" to solve a differential system emulation task. A 294-fold acceleration against a conventional benchmark is predicted. We also propose and derive power consumption analysis for modulator-class neurons that, as opposed to laser-class neurons, are compatible with silicon photonic platforms. At increased scale, Neuromorphic silicon photonics could access new regimes of ultrafast information processing for radio, control, and scientific computing.

5.
Opt Express ; 24(8): 8895-906, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137322

RESUMO

We demonstrate 4-channel, 2GHz weighted addition in a silicon microring filter bank. Accurate analog weight control becomes more difficult with increasing number of channels, N, as feedback approaches become impractical and brute force feedforward approaches take O(2N) calibration measurements in the presence of inter-channel dependence. We introduce model-based calibration techniques for thermal cross-talk and cross-gain saturation, which result in a scalable O(N) calibration routine and 3.8 bit feedforward weight accuracy on every channel. Practical calibration routines are indispensible for controlling large-scale microring systems. The effect of thermal model complexity on accuracy is discussed. Weighted addition based on silicon microrings can apply the strengths of photonic manufacturing, wideband information processing, and multiwavelength networks towards new paradigms of ultrafast analog distributed processing.

6.
Sci Rep ; 6: 19126, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26753897

RESUMO

Novel materials and devices in photonics have the potential to revolutionize optical information processing, beyond conventional binary-logic approaches. Laser systems offer a rich repertoire of useful dynamical behaviors, including the excitable dynamics also found in the time-resolved "spiking" of neurons. Spiking reconciles the expressiveness and efficiency of analog processing with the robustness and scalability of digital processing. We demonstrate a unified platform for spike processing with a graphene-coupled laser system. We show that this platform can simultaneously exhibit logic-level restoration, cascadability and input-output isolation--fundamental challenges in optical information processing. We also implement low-level spike-processing tasks that are critical for higher level processing: temporal pattern detection and stable recurrent memory. We study these properties in the context of a fiber laser system and also propose and simulate an analogous integrated device. The addition of graphene leads to a number of advantages which stem from its unique properties, including high absorption and fast carrier relaxation. These could lead to significant speed and efficiency improvements in unconventional laser processing devices, and ongoing research on graphene microfabrication promises compatibility with integrated laser platforms.

7.
Opt Express ; 23(20): 26800-13, 2015 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-26480191

RESUMO

The combination of ultrafast laser dynamics and dense on-chip multiwavelength networking could potentially address new domains of real-time signal processing that require both speed and complexity. We present a physically realistic optoelectronic simulation model of a circuit for dynamical laser neural networks and verify its behavior. We describe the physics, dynamics, and parasitics of one network node, which includes a bank of filters, a photodetector, and excitable laser. This unconventional circuit exhibits both cascadability and fan-in, critical properties for the large-scale networking of information processors based on laser excitability. In addition, it can be instantiated on a photonic integrated circuit platform and requires no off-chip optical I/O. Our proposed processing system could find use in emerging applications, including cognitive radio and low-latency control.

8.
Opt Express ; 23(10): 12758-65, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-26074530

RESUMO

We consider an optical technique for performing tunable weighted addition using wavelength-division multiplexed (WDM) inputs, the enabling function of a recently proposed photonic spike processing architecture [J. Lightwave Technol., 32 (2014)]. WDM weighted addition provides important advantages to performance, integrability, and networking capability that were not possible in any past approaches to optical neurocomputing. In this letter, we report a WDM weighted addition prototype used to find the first principal component of a 1Gbps, 8-channel signal. Wideband, multivariate techniques have immediate relevance to modern radio systems, and photonic spike processing networks enabled by WDM could open new domains of information processing that bring unprecedented bandwidth and intelligence to problems in radio communications, ultrafast control, and scientific computing.

9.
Opt Express ; 23(6): 8029-44, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25837141

RESUMO

We propose an equivalent circuit model for photonic spike processing laser neurons with an embedded saturable absorber­a simulation model for photonic excitable lasers (SIMPEL). We show that by mapping the laser neuron rate equations into a circuit model, SPICE analysis can be used as an efficient and accurate engine for numerical calculations, capable of generalization to a variety of different types of laser neurons with saturable absorber found in literature. The development of this model parallels the Hodgkin-Huxley model of neuron biophysics, a circuit framework which brought efficiency, modularity, and generalizability to the study of neural dynamics. We employ the model to study various signal-processing effects such as excitability with excitatory and inhibitory pulses, binary all-or-nothing response, and bistable dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...