Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 21918, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318551

RESUMO

Cardiomyocytes of newborn mice proliferate after injury or exposure to growth factors. However, these responses are diminished after postnatal day-6 (P6), representing a barrier to building new cardiac muscle in adults. We have previously shown that exogenous thyroid hormone (T3) stimulates cardiomyocyte proliferation in P2 cardiomyocytes, by activating insulin-like growth factor-1 receptor (IGF-1R)-mediated ERK1/2 signaling. But whether exogenous T3 functions as a mitogen in post-P6 murine hearts is not known. Here, we show that exogenous T3 increases the cardiomyocyte endowment of P8 hearts, but the proliferative response is confined to cardiomyocytes of the left ventricular (LV) apex. Exogenous T3 stimulates proliferative ERK1/2 signaling in apical cardiomyocytes, but not in those of the LV base, which is inhibited by expression of the nuclear phospho-ERK1/2-specific dual-specificity phosphatase, DUSP5. Developmentally, between P7 and P14, DUSP5 expression increases in the myocardium from the LV base to its apex; after this period, it is uniformly expressed throughout the LV. In young adult hearts, exogenous T3 increases cardiomyocyte numbers after DUSP5 depletion, which might be useful for eliciting cardiac regeneration.


Assuntos
Fosfatases de Especificidade Dupla/biossíntese , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/enzimologia , Miocárdio/enzimologia , Miócitos Cardíacos/enzimologia , Tri-Iodotironina/farmacologia , Animais , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo
2.
Sci Rep ; 9(1): 17731, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776360

RESUMO

Mitochondria-generated reactive oxygen species (mROS) are frequently associated with DNA damage and cell cycle arrest, but physiological increases in mROS serve to regulate specific cell functions. T3 is a major regulator of mROS, including hydrogen peroxide (H2O2). Here we show that exogenous thyroid hormone (T3) administration increases cardiomyocyte numbers in neonatal murine hearts. The mechanism involves signaling by mitochondria-generated H2O2 (mH2O2) acting via the redox sensor, peroxiredoxin-1, a thiol peroxidase with high reactivity towards H2O2 that activates c-Jun N-terminal kinase-2α2 (JNK2α2). JNK2α2, a relatively rare member of the JNK family of mitogen-activated protein kinases (MAPK), phosphorylates c-Jun, a component of the activator protein 1 (AP-1) early response transcription factor, resulting in enhanced insulin-like growth factor 1 (IGF-1) expression and activation of proliferative ERK1/2 signaling. This non-canonical mechanism of MAPK activation couples T3 actions on mitochondria to cell cycle activation. Although T3 is regarded as a maturation factor for cardiomyocytes, these studies identify a novel redox pathway that is permissive for T3-mediated cardiomyocyte proliferation-this because of the expression of a pro-proliferative JNK isoform that results in growth factor elaboration and ERK1/2 cell cycle activation.


Assuntos
Proliferação de Células , Sistema de Sinalização das MAP Quinases , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/metabolismo , Hormônios Tireóideos/farmacologia , Animais , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Oxirredução , Peroxirredoxinas/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(25): 6949-54, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27274047

RESUMO

Heart disease is a leading cause of death in adults. Here, we show that a few days after coronary artery ligation and reperfusion, the ischemia-injured heart elaborates the cardioprotective polypeptide, insulin-like growth factor-1 (IGF-1), which activates IGF-1 receptor prosurvival signaling and improves cardiac left ventricular systolic function. However, this signaling is antagonized by the chymase, mouse mast cell protease 4 (MMCP-4), which degrades IGF-1. We found that deletion of the gene encoding MMCP-4 (Mcpt4), markedly reduced late, but not early, infarct size by suppressing IGF-1 degradation and, consequently, diminished cardiac dysfunction and adverse structural remodeling. Our findings represent the first demonstration to our knowledge of tissue IGF-1 regulation through proteolytic degradation and suggest that chymase inhibition may be a viable therapeutic approach to enhance late cardioprotection in postischemic heart disease.


Assuntos
Morte Celular , Fator de Crescimento Insulin-Like I/metabolismo , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Serina Endopeptidases/metabolismo , Animais , Hidrólise , Camundongos , Serina Endopeptidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...