Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Physiol Educ ; 48(2): 421-426, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38545644

RESUMO

We offered an enrichment program for high school students with the theme, "The Environment, Health, and You" during the Summer of 2022 and the Spring of 2023. We developed several educational modules for high school students that provided them with an opportunity to learn and explore the foundations of physiological systems, nutrient needs to maintain health, and the impact that environmental factors can have on them. The modules included videos, discussion boards, games, readings, and labs. These modules were integrated into the first session: Your Body and Health. On day 1, the first module explored the basic physiology and anatomy of the body with respect to the organization of cells into organ systems. Additionally, the educational content included information on macro- and micronutrients and their impact on body development, nutrition, and metabolism. The nutrition module explored nutrition concepts and various factors that can impact healthy eating patterns, such as food insecurity issues and the consumption of ultraprocessed foods. A lab activity on label reading was included to help empower students to make healthy choices. A total of 43 high school students participated in the program. Overall, the quality of the educational content in the modules was rated highly by the students, and they indicated that the educational experience inspired them to learn more about the physiology and nutrition concepts associated with human metabolism, and the importance of healthy food choices to maintain health.NEW & NOTEWORTHY We describe how we integrated guided learning teaching modules in an enrichment program for high school students with the aim of enhancing their knowledge and skills to empower them to take charge of their own health risks and well-being.


Assuntos
Segurança Alimentar , Estudantes , Humanos , Adolescente , Feminino , Masculino , Faculdades de Medicina , Instituições Acadêmicas , Relações Comunidade-Instituição , Educação em Saúde/métodos , Manipulação de Alimentos/métodos
2.
BMC Med Educ ; 23(1): 919, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053172

RESUMO

BACKGROUND: Physician bias refers to the unconscious negative perceptions that physicians have of patients or their conditions. Medical schools and residency programs often incorporate training to reduce biases among their trainees. In order to assess trends and organize available literature, we conducted a scoping review with a goal to categorize different biases that are studied within medical student (MS), resident (Res) and mixed populations (MS and Res). We also characterized these studies based on their research goal as either documenting evidence of bias (EOB), bias intervention (BI) or both. These findings will provide data which can be used to identify gaps and inform future work across these criteria. METHODS: Online databases (PubMed, PsycINFO, WebofScience) were searched for articles published between 1980 and 2021. All references were imported into Covidence for independent screening against inclusion criteria. Conflicts were resolved by deliberation. Studies were sorted by goal: 'evidence of bias' and/or 'bias intervention', and by population (MS or Res or mixed) andinto descriptive categories of bias. RESULTS: Of the initial 806 unique papers identified, a total of 139 articles fit the inclusion criteria for data extraction. The included studies were sorted into 11 categories of bias and showed that bias against race/ethnicity, specific diseases/conditions, and weight were the most researched topics. Of the studies included, there was a higher ratio of EOB:BI studies at the MS level. While at the Res level, a lower ratio of EOB:BI was found. CONCLUSIONS: This study will be of interest to institutions, program directors and medical educators who wish to specifically address a category of bias and identify where there is a dearth of research. This study also underscores the need to introduce bias interventions at the MS level.


Assuntos
Internato e Residência , Estudantes de Medicina , Humanos , Escolaridade , Viés
3.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199378

RESUMO

Iron-sulfur clusters are essential to almost every life form and utilized for their unique structural and redox-targeted activities within cells during many cellular pathways. Although there are three different Fe-S cluster assembly pathways in prokaryotes (the NIF, SUF and ISC pathways) and two in eukaryotes (CIA and ISC pathways), the iron-sulfur cluster (ISC) pathway serves as the central mechanism for providing 2Fe-2S clusters, directly and indirectly, throughout the entire cell in eukaryotes. Proteins central to the eukaryotic ISC cluster assembly complex include the cysteine desulfurase, a cysteine desulfurase accessory protein, the acyl carrier protein, the scaffold protein and frataxin (in humans, NFS1, ISD11, ACP, ISCU and FXN, respectively). Recent molecular details of this complex (labeled NIAUF from the first letter from each ISC protein outlined earlier), which exists as a dimeric pentamer, have provided real structural insight into how these partner proteins arrange themselves around the cysteine desulfurase, the core dimer of the (NIAUF)2 complex. In this review, we focus on both frataxin and the scaffold within the human, fly and yeast model systems to provide a better understanding of the biophysical characteristics of each protein alone and within the FXN/ISCU complex as it exists within the larger NIAUF construct. These details support a complex dynamic interaction between the FXN and ISCU proteins when both are part of the NIAUF complex and this provides additional insight into the coordinated mechanism of Fe-S cluster assembly.


Assuntos
Proteínas de Ligação ao Ferro/genética , Proteínas Ferro-Enxofre/genética , Ferro/metabolismo , Enxofre/metabolismo , Liases de Carbono-Enxofre/genética , Humanos , Proteínas de Ligação ao Ferro/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Ligação Proteica/genética , Frataxina
4.
Noncoding RNA ; 7(3)2021 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-34287356

RESUMO

Exosomes are a class of small, secreted extracellular vesicles (EV) that have recently gained considerable attention for their role in normal cellular function, disease processes and potential as biomarkers. Exosomes serve as intercellular messengers and carry molecular cargo that can alter gene expression and the phenotype of recipient cells. Here, we investigated alterations of microRNA cargo in exosomes secreted by epileptogenic tissue in tuberous sclerosis complex (TSC), a multi-system genetic disorder that includes brain lesions known as tubers. Approximately 90% of TSC patients suffer from seizures that originate from tubers, and ~60% are resistant to antiseizure drugs. It is unknown why some tubers cause seizures while others do not, and the molecular basis of drug-resistant epilepsy is not well understood. It is believed that neuroinflammation is involved, and characterization of this mechanism may be key to disrupting the "vicious cycle" between seizures, neuroinflammation, and increased seizure susceptibility. We isolated exosomes from epileptogenic and non-epileptogenic TSC tubers, and we identified differences in their microRNA cargo using small RNA-seq. We identified 12 microRNAs (including miR-142-3p, miR-223-3p and miR-21-5p) that are significantly increased in epileptogenic tubers and contain nucleic acid motifs that activate toll-like receptors (TLR7/8), initiating a neuroinflammatory cascade. Exosomes from epileptogenic tissue caused induction of key pathways in cultured cells, including innate immune signaling (TLR), inflammatory response and key signaling nodes SQSTM1 (p62) and CDKN1A (p21). Genes induced in vitro were also significantly upregulated in epileptogenic tissue. These results provide new evidence on the role of exosomes and non-coding RNA cargo in the neuroinflammatory cascade of epilepsy and may help advance the development of novel biomarkers and therapeutic approaches for the treatment of drug-resistant epilepsy.

5.
Histochem Cell Biol ; 153(6): 469-480, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32193594

RESUMO

Expensive and time-consuming approaches of immunoelectron microscopy of biopsy tissues continues to serve as the gold-standard for diagnostic pathology. The recent development of the new approach of expansion microscopy (ExM) capable of fourfold lateral expansion of biological specimens for their morphological examination at approximately 70 nm lateral resolution using ordinary diffraction limited optical microscopy, is a major advancement in cellular imaging. Here we report (1) an optimized fixation protocol for retention of cellular morphology while obtaining optimal expansion, (2) an ExM procedure for up to eightfold lateral and over 500-fold volumetric expansion, (3) demonstrate that ExM is anisotropic or differential between tissues, cellular organelles and domains within organelles themselves, and (4) apply image analysis and machine learning (ML) approaches to precisely assess differentially expanded cellular structures. We refer to this enhanced ExM approach combined with ML as differential expansion microscopy (DiExM), applicable to profiling biological specimens at the nanometer scale. DiExM holds great promise for the precise, rapid and inexpensive diagnosis of disease from pathological specimen slides.


Assuntos
Fígado/citologia , Músculo Esquelético/citologia , Nanopartículas/química , Imagem Óptica , Animais , Humanos , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Polímeros/síntese química , Polímeros/química , Ratos
6.
Histochem Cell Biol ; 153(4): 279-285, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31901974

RESUMO

Swelling of secretory vesicles is critical for the regulated release of intra-vesicular contents from cells during secretion. At the secretory vesicle membrane of the exocrine pancreas and neurons, GTP-binding G proteins, vH+-ATPase, potassium channels and AQP water channels, are among the players implicated in vesicle volume regulation. Here we report in the endocrine insulin-secreting MIN6 cells, the similar requirement of vH+-ATPase-mediated intracellular acidification on glucose-stimulated insulin release. MIN6 cells exposed to the vH+-ATPase inhibitor Bafilomycin A show decreased acidification of the cytosolic compartment that include insulin-carrying granules. Additionally, a loss of insulin granules near the cell plasma membrane following Bafilomycin A treatment, suggests impaired transport of insulin granules and consequent decrease in glucose-stimulated insulin secretion and accumulation of intracellular insulin. These results suggest that vH+-ATPase-mediated intracellular acidification is required for insulin secretion in beta cells.


Assuntos
Adenosina Trifosfatases/metabolismo , Glucose/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Animais , Células Cultivadas , Glucose/antagonistas & inibidores , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Macrolídeos/farmacologia , Camundongos
7.
J Phys Chem B ; 123(32): 6997-7005, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31322890

RESUMO

The cell plasma membrane is a highly dynamic organelle governing a wide range of cellular activities including ion transport, secretion, cell division, growth, and development. The fundamental process involved in the addition of new membranes to pre-existing plasma membranes, however, is unclear. Here, we report, using biophysical, morphological, biochemical, and molecular dynamic simulations, the selective incorporation of proteins and lipids from the cytosol into the cell plasma membrane dictated by membrane stretch and composition. Stretching of the cell membrane as a consequence of volume increase following incubation in a hypotonic solution and results in the incorporation of cytosolic proteins and lipids into the existing plasma membrane. Molecular dynamic simulations further confirm that increased membrane stretch results in the rapid insertion of lipids into the existing plasma membrane. Similarly, depletion of cholesterol from the cell plasma membrane selectively alters the incorporation of lipids into the membrane.


Assuntos
Proteínas Sanguíneas/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Citosol/metabolismo , Eritrócitos/metabolismo , Insulinoma/metabolismo , Lipídeos de Membrana/metabolismo , Animais , Camundongos , Simulação de Dinâmica Molecular , Neoplasias Pancreáticas/metabolismo , Proteoma/análise , Proteoma/metabolismo , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
8.
Neurol Neuroimmunol Neuroinflamm ; 6(3): e550, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31044144

RESUMO

Objective: To identify whether factors toxic to oligodendrocytes (OLs), released by B cells from patients with MS, are found in extracellular microvesicles enriched in exosomes. Methods: Conditioned medium (Sup) was obtained from cultures of blood B cells of patients with MS and normal controls (NCs). Exosome-enriched (Ex-En) fractions were prepared by solvent precipitation from Sup containing bovine serum and from serum-free Sup by ultracentrifugation (UC) or immunoprecipitation (IP) with antibodies to CD9. Ex-En fractions were diluted 1:4 with OL culture medium and screened for toxic effects on cultured rat OLs as measured by trypan blue uptake. Proteomic analysis was performed on Sup fractions. Results: MS B cell-derived Ex-En fractions prepared from Sup by solvent extraction, UC, or IP induced OL death, whereas corresponding Ex-En fractions from NC showed little toxicity. Proteomic analysis of Sup demonstrated enrichment of proteins characteristic of exosomes from both NC and MS B-cell Sup. Ontology enrichment analysis suggested differences in the types and cargo of exosomes from MS Sup compared with NC, with proteins related to cell surface, extracellular plasma membrane, and gliogenesis enriched in MS. Conclusions: Much of the in vitro toxicity of Sup from B cells of patients with relapsing-remitting MS is found in Ex-En fractions, as confirmed by 3 methods. Proteomic analysis of B-cell Sup indicates multiple differences between MS and NC.


Assuntos
Linfócitos B/metabolismo , Córtex Cerebral , Exossomos/metabolismo , Esclerose Múltipla Recidivante-Remitente/metabolismo , Oligodendroglia , Adulto , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Humanos , Esclerose Múltipla Recidivante-Remitente/sangue , Proteômica , Ratos
9.
ACS Biomater Sci Eng ; 5(2): 970-976, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33405788

RESUMO

Current approaches in regenerative medicine to develop human skeletal muscle replicating native tissue for engrafts and high-throughput drug screening and gene therapy are still in their infancy and have not proven to recapitulate the behavior and regulatory processes present in endogenous skeletal muscle tissue. This stems at least in part from the lack of a comprehensive understanding of the emergent properties of in vitro skeletal muscle growth and development. To address this gap in our current knowledge, we have developed a stretchable micropatterned 3D human skeletal muscle platform that recapitulates organized and parallel growth of muscle cells and fibers as opposed to the randomly oriented cells growth on a 2D glass surface. Mass spectrometry of the muscle cells growing on the 3D platform express key myogenic proteins such as myoferlin for myoblast fusion required in the formation of muscle tissue, and proteins involved in mitochondrial health and biogenesis, in contrast to cells growing on 2D glass surface. These results demonstrate that the engineered human muscle cells grown on the 3D platform holds great promise to further establish the emergent properties of in vitro skeletal muscle growth and development for a wide range of biomedical applications.

10.
Nano Lett ; 18(11): 7021-7029, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30346792

RESUMO

Ions greatly influence protein structure-function and are critical to health and disease. A 10, 000-fold higher calcium in the sarcoplasmic reticulum (SR) of muscle suggests elevated calcium levels near active calcium channels at the SR membrane and the impact of localized high calcium on the structure-function of the motor protein myosin. In the current study, combined quantum dot (QD)-based nanothermometry and circular dichroism (CD) spectroscopy enabled detection of previously unknown enthalpy changes and associated structural remodeling of myosin, impacting its function following exposure to elevated calcium. Cadmium telluride QDs adhere to myosin, function as thermal sensors, and reveal that exposure of myosin to calcium is exothermic, resulting in lowering of enthalpy, a decrease in alpha helical content measured using CD spectroscopy, and the consequent increase in motor efficiency. Isolated muscle fibers subjected to elevated levels of calcium further demonstrate fiber lengthening and decreased motility of actin filaments on myosin-functionalized substrates. Our results, in addition to providing new insights into our understanding of muscle structure-function, establish a novel approach to understand the enthalpy of protein-ion interactions and the accompanying structural changes that may occur within the protein molecule.


Assuntos
Compostos de Cádmio/química , Cálcio/química , Dicroísmo Circular , Miosinas/química , Pontos Quânticos/química , Telúrio/química , Termometria , Animais , Camundongos , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade
11.
Histochem Cell Biol ; 150(4): 395-401, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30145684

RESUMO

Valproate (VPA), an FDA approved anti-epileptic drug with a half-life of 12-18 h in humans, has been shown to perturb the vacuolar proton pump (vH+-ATPase) function in yeasts by inhibiting myo-inositol phosphate synthase, the first and rate-limiting enzyme in inositol biosynthesis, thereby resulting in inositol depletion. vH+-ATPase transfers protons (H+) across cell membranes, which help maintain pH gradients within cells necessary for various cellular functions including secretion. This proton pump has a membrane (V0) and a soluble cytosolic (V1) domain, with C-subunit associated with V1. In secretory cells such as neurons and insulin-secreting beta cells, vH+-ATPase acidifies vesicles essential for secretion. In this study, we demonstrate that exposure of insulin-secreting Min6 cells to a clinical dose of VPA results in inositol depletion and loss of co-localization of subunit C of vH+-ATPase with insulin-secreting granules. Consequently, a reduction of glucose-stimulated insulin secretion is observed following VPA exposure. These results merit caution and the reassessment of the clinical use of VPA.


Assuntos
Glucose/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Ácido Valproico/farmacologia , Animais , Secreção de Insulina , Camundongos , Células Tumorais Cultivadas , Ácido Valproico/química
12.
Semin Cell Dev Biol ; 73: 57-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28779980

RESUMO

A wide range of cellular activities including protein folding and cell secretion, such as neurotransmission or insulin release, are all governed by intracellular pH homeostasis, underscoring the importance of pH on critical life processes. Nano- scale pH measurements of cells and biomolecules therefore hold great promise in understanding a plethora of cellular functions, in addition to disease detection and therapy. In the current study, a novel approach using cadmium telluride quantum dots (CdTeQDs) as pH sensors, combined with fluorescent imaging, spectrofluorimetry, atomic force microscopy (AFM), and Western blot analysis, enabled the study of intracellular pH dynamics at 1 milli-pH sensitivity and 80nm pixel resolution, during insulin secretion. Additionally, the pH-dependent interaction between membrane fusion proteins, also called the soluble N-ethylmaleimide-sensitive factor activating protein receptor (SNARE), was determined. Glucose stimulation of CdTeQD-loaded insulin secreting Min-6 mouse insulinoma cell line demonstrated the initial (5-6min) intracellular acidification reflected as a loss in QD fluorescence, followed by alkalization and a return to resting pH in 10min. Analysis of the SNARE complex in insulin secreting Min-6 cells demonstrated an initial gain followed by loss of complexed SNAREs in 10min. Stabilization of the SNARE complex at low intracellular pH is further supported by results from studies utilizing both native and AFM measurements of liposome-reconstituted recombinant neuronal SNAREs, providing a molecular understanding of the role of pH during cell secretion.


Assuntos
Fluorescência , Insulinoma/metabolismo , Insulinoma/patologia , Fusão de Membrana , Microscopia de Força Atômica , Imagem Óptica , Animais , Concentração de Íons de Hidrogênio , Simulação de Dinâmica Molecular
13.
ACS Chem Neurosci ; 8(6): 1163-1169, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28244738

RESUMO

Synaptic vesicles measuring 30-50 nm in diameter containing neurotransmitters either completely collapse at the presynaptic membrane or dock and transiently fuse at the base of specialized 15 nm cup-shaped lipoprotein structures called porosomes at the presynaptic membrane of synaptosomes to release neurotransmitters. Recent study reports the unique composition of major lipids associated with neuronal porosomes. Given that lipids greatly influence the association and functions of membrane proteins, differences in lipid composition of synaptic vesicle and the synaptosome membrane was hypothesized. To test this hypothesis, the lipidome of isolated synaptosome, synaptosome membrane, and synaptic vesicle preparation were determined by using mass spectrometry in the current study. Results from the study demonstrate the enriched presence of triacyl glycerols and sphingomyelins in synaptic vesicles, as opposed to the enriched presence of phospholipids in the synaptosome membrane fraction, reflecting on the tight regulation of nerve cells in compartmentalization of membrane lipids at the nerve terminal.


Assuntos
Lipídeos de Membrana/química , Vesículas Sinápticas/química , Sinaptossomos/química , Animais , Química Encefálica , Membrana Celular/química , Espectrometria de Massas , Ratos
14.
Nano Lett ; 17(2): 1262-1268, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28112520

RESUMO

Despite recent advances in thermometry, determination of temperature at the nanometer scale in single molecules to live cells remains a challenge that holds great promise in disease detection among others. In the present study, we use a new approach to nanometer scale thermometry with a spatial and thermal resolution of 80 nm and 1 mK respectively, by directly associating 2 nm cadmium telluride quantum dots (CdTe QDs) to the subject under study. The 2 nm CdTe QDs physically adhered to bovine cardiac and rabbit skeletal muscle myosin, enabling the determination of heat released when ATP is hydrolyzed by both myosin motors. Greater heat loss reflects less work performed by the motor, hence decreased efficiency. Surprisingly, we found rabbit skeletal myosin to be more efficient than bovine cardiac. We have further extended this approach to demonstrate the gain in efficiency of Drosophila melanogaster skeletal muscle overexpressing the PGC-1α homologue spargel, a known mediator of improved exercise performance in humans. Our results establish a novel approach to determine muscle efficiency with promise for early diagnosis and treatment of various metabolic disorders including cancer.


Assuntos
Compostos de Cádmio/química , Miosinas Cardíacas/química , Músculo Esquelético/fisiologia , Pontos Quânticos/química , Miosinas de Músculo Esquelético/química , Telúrio/química , Trifosfato de Adenosina/química , Animais , Bovinos , Drosophila melanogaster/fisiologia , Fluorescência , Hidrólise , Masculino , Nanotecnologia , Tamanho da Partícula , Coelhos , Miosinas de Músculo Esquelético/fisiologia , Propriedades de Superfície , Temperatura , Termometria
15.
Micron ; 92: 25-31, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27846432

RESUMO

Efficient drug delivery is critical to therapy. Using electron microscopy, X-ray, and light microscopy, we have characterized functionalized superparamagnetic iron oxide (SPIO) nanoparticles, and determined their ability for rapid entry and release of the cancer drug doxorubicin in human pancreatic cancer cells. Dextran-coated SPIO nanoparticle ferrofluid, functionalized with the red-autofluorescing doxorubicin and the green-fluorescent dye fluorescein isothiocyanate as a reporter, enables tracking the intracellular nanoparticle transport and drug release. This engineered nanoparticle enables a >20 fold rapid entry and release of the drug in human pancreatic cancer cells, holding therapeutic potential as an advanced drug delivery and imaging platform. The low extracellular pH of most tumors precluding the entry of a number of weakly basic drugs such as doxorubicin, conferring drug resistance, can now be overcome.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas de Magnetita/química , Nanopartículas/metabolismo , Antibióticos Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Doxorrubicina/metabolismo , Compostos Férricos/química , Fluoresceína-5-Isotiocianato/química , Fluoresceína-5-Isotiocianato/metabolismo , Fluorescência , Humanos , Nanopartículas de Magnetita/estatística & dados numéricos , Nanopartículas/química , Neoplasias Pancreáticas/tratamento farmacológico
16.
Exp Biol Med (Maywood) ; 241(2): 115-30, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26264442

RESUMO

Cup-shaped secretory portals at the cell plasma membrane called porosomes mediate the precision release of intravesicular material from cells. Membrane-bound secretory vesicles transiently dock and fuse at the base of porosomes facing the cytosol to expel pressurized intravesicular contents from the cell during secretion. The structure, isolation, composition, and functional reconstitution of the neuronal porosome complex have greatly progressed, providing a molecular understanding of its function in health and disease. Neuronal porosomes are 15 nm cup-shaped lipoprotein structures composed of nearly 40 proteins, compared to the 120 nm nuclear pore complex composed of >500 protein molecules. Membrane proteins compose the porosome complex, making it practically impossible to solve its atomic structure. However, atomic force microscopy and small-angle X-ray solution scattering studies have provided three-dimensional structural details of the native neuronal porosome at sub-nanometer resolution, providing insights into the molecular mechanism of its function. The participation of several porosome proteins previously implicated in neurotransmission and neurological disorders, further attest to the crosstalk between porosome proteins and their coordinated involvement in release of neurotransmitter at the synapse.


Assuntos
Estruturas da Membrana Celular/metabolismo , Estruturas da Membrana Celular/ultraestrutura , Substâncias Macromoleculares/metabolismo , Substâncias Macromoleculares/ultraestrutura , Proteínas de Membrana/ultraestrutura , Neurônios/fisiologia , Transmissão Sináptica , Animais , Estruturas da Membrana Celular/química , Humanos , Substâncias Macromoleculares/química , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Microscopia de Força Atômica , Modelos Biológicos , Conformação Proteica , Espalhamento a Baixo Ângulo
17.
Endocrinology ; 157(1): 54-60, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26523491

RESUMO

Supramolecular cup-shaped lipoprotein structures called porosomes embedded in the cell plasma membrane mediate fractional release of intravesicular contents from cells during secretion. The presence of porosomes, have been documented in many cell types including neurons, acinar cells of the exocrine pancreas, GH-secreting cells of the pituitary, and insulin-secreting pancreatic ß-cells. Functional reconstitution of porosomes into artificial lipid membranes, have also been accomplished. Earlier studies on mouse insulin-secreting Min6 cells report 100-nm porosome complexes composed of nearly 30 proteins. In the current study, porosomes have been functionally reconstituted for the first time in live cells. Isolated Min6 porosomes reconstituted into live Min6 cells demonstrate augmented levels of porosome proteins and a consequent increase in the potency and efficacy of glucose-stimulated insulin release. Elevated glucose-stimulated insulin secretion 48 hours after reconstitution, reflects on the remarkable stability and viability of reconstituted porosomes, documenting the functional reconstitution of native porosomes in live cells. These results, establish a new paradigm in porosome-mediated insulin secretion in ß-cells.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Microdomínios da Membrana/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Sintaxina 1/metabolismo , Animais , Linhagem Celular Tumoral , Hiperglicemia/sangue , Hiperglicemia/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/enzimologia , Células Secretoras de Insulina/ultraestrutura , Microdomínios da Membrana/enzimologia , Microdomínios da Membrana/ultraestrutura , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Estabilidade Proteica , Transporte Proteico , Espalhamento a Baixo Ângulo , Taxa Secretória , Proteína 25 Associada a Sinaptossoma/isolamento & purificação , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...