Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Eng Educ ; : 1-15, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37363619

RESUMO

In this paper, we altered an in-person high school tissue engineering program to create a virtual course. Through this alteration, we aimed to show that online programs can still be engaging and at the same time provide greater accessibility and flexibility to students. This was achieved through utilizing Google classroom as a virtual platform for students to engage with course modules and assessments. After analyzing pre- and post-program survey responses in both the in-person and online offerings of the CardioStart program, it was found that students improved in their understanding of all of the tissue engineering topics that were introduced in the programs. Furthermore, when comparing the results from the in-person versus online offerings of the program, it was found that the level of student understanding and learning of these topics was similar across the in-person and online programs. We were also able to engage five times the number of students online as compared to the in-person program, which was conducted yearly for six summers. However, many students indicated that their experience would have been better if hands-on activities were included to supplement their knowledge of cell culture techniques after completing the course. The online program improved accessibility and scalability of the program compared to in-person workshops. Future work will consist of bridging this virtual course and the hands-on experiments performed during the in-person program to provide interested students access to laboratory experiences.

2.
PLoS Comput Biol ; 16(3): e1007676, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32130207

RESUMO

As sarcomeres produce the force necessary for contraction, assessment of sarcomere order is paramount in evaluation of cardiac and skeletal myocytes. The uniaxial force produced by sarcomeres is ideally perpendicular to their z-lines, which couple parallel myofibrils and give cardiac and skeletal myocytes their distinct striated appearance. Accordingly, sarcomere structure is often evaluated by staining for z-line proteins such as α-actinin. However, due to limitations of current analysis methods, which require manual or semi-manual handling of images, the mechanism by which sarcomere and by extension z-line architecture can impact contraction and which characteristics of z-line architecture should be used to assess striated myocytes has not been fully explored. Challenges such as isolating z-lines from regions of off-target staining that occur along immature stress fibers and cell boundaries and choosing metrics to summarize overall z-line architecture have gone largely unaddressed in previous work. While an expert can qualitatively appraise tissues, these challenges leave researchers without robust, repeatable tools to assess z-line architecture across different labs and experiments. Additionally, the criteria used by experts to evaluate sarcomeric architecture have not been well-defined. We address these challenges by providing metrics that summarize different aspects of z-line architecture that correspond to expert tissue quality assessment and demonstrate their efficacy through an examination of engineered tissues and single cells. In doing so, we have elucidated a mechanism by which highly elongated cardiomyocytes become inefficient at producing force. Unlike previous manual or semi-manual methods, characterization of z-line architecture using the metrics discussed and implemented in this work can quantitatively evaluate engineered tissues and contribute to a robust understanding of the development and mechanics of striated muscles.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Fibras Musculares Esqueléticas , Miócitos Cardíacos , Sarcômeros , Algoritmos , Animais , Células Cultivadas , Humanos , Microscopia de Fluorescência , Fibras Musculares Esqueléticas/química , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético/citologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/ultraestrutura , Miofibrilas/fisiologia , Ratos , Ratos Sprague-Dawley , Sarcômeros/química , Sarcômeros/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...