Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36296613

RESUMO

The current work explores the adsorptive efficiency of carbon nanospheres (CNSs) derived from oil palm leaves (OPL) that are a source of biowaste. CNSs were synthesized at 400, 600, 800 and 1000 °C, and those obtained at 1000 °C demonstrated maximum removal efficiency of ~91% for malachite green (MG). Physicochemical and microscopic characteristics were analysed by FESEM, TEM, FTIR, Raman, TGA and XPS studies. The presence of surface oxygen sites and the porosity of CNSs synergistically influenced the speed of removal of MG, brilliant green (BG) and Congo red (CR) dyes. With a minimal adsorbent dosage (1 mg) and minimum contact time (10 min), and under different pH conditions, adsorption was efficient and cost-effective (nearly 99, 91 and 88% for BG, MG and CR, respectively). The maximum adsorption capacities of OPL-based CNSs for BG were 500 and 104.16 mg/g for MG and 25.77 mg/g for CR. Adsorption isotherms (Freundlich, Langmuir and Temkin) and kinetics models (pseudo-first-order, pseudo-second-order and Elovich) for the adsorption processes of all three dyes on the CNSs were explored in detail. BG and CR adsorption the Freundlich isotherm best, while MG showed a best fit to the Temkin model. Adsorption kinetics of all three dyes followed a pseudo-second-order model. A reusability study was conducted to evaluate the effectiveness of CNSs in removing the MG dye and showed ~92% efficiency even after several cycles. Highly efficient CNSs with surface oxygen groups and speedy removal of organic dyes within 10 min by CNSs are highlighted in this paper.


Assuntos
Nanosferas , Poluentes Químicos da Água , Vermelho Congo/análise , Carbono , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio , Corantes/análise , Adsorção , Cinética , Água , Oxigênio/análise , Soluções
2.
Environ Sci Pollut Res Int ; 29(52): 79067-79081, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35704233

RESUMO

In the present study, recyclable porous nano-carbons (PNCs) were used to remove textile dyes (mainly methylene blue, methyl orange, and rhodamine B) from an aqueous environment. Due to their high surface area and mesoporous nature, PNCs exhibited extremely fast and efficient adsorption behavior. PNCs synthesized at an elevated temperature of 1000 °C are used in batch experiments, as they showed maximum dye removal with high surface area. Batch mode was used to optimize operational parameters such as initial dye concentration, contact time, adsorbent dose and pH as a function of time. Within ~7 minutes of treatment, PNCs achieved a maximum removal efficacy of ~99 percent for methylene blue. The recyclability of PNCs was investigated, and it retained its efficiency even after seven cycles. The efficacy of PNCs in treating industrial water contaminated with methylene blue dye was assessed. Different adsorption isotherms were carried out to determine maximum amount of dye that can be adsorbed on to surface of PNCs. The maximum adsorption capacity attained using Langmuir isotherm for methylene blue was around 1216.54 mg g-1. Adsorption kinetics were applied on experimental data to identify the rate of adsorption. It was confirmed that novel onion peel-based porous PNCs were successful in removing methylene blue dye effectively with short duration in comparison with other dyes mainly rhodamine B and methyl orange.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Adsorção , Corantes , Azul de Metileno , Porosidade , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...