Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(49): E10578-E10585, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158380

RESUMO

Cancer immunotherapy has emerged as a promising therapeutic intervention. However, complete and durable responses are only seen in a fraction of patients who have cancer. A key factor that limits therapeutic success is the infiltration of tumors by cells of the myeloid lineage. The inhibitory receptor signal regulatory protein-α (SIRPα) is a myeloid-specific immune checkpoint that engages the "don't eat me" signal CD47 expressed on tumors and normal tissues. We therefore developed the monoclonal antibody KWAR23, which binds human SIRPα with high affinity and disrupts its binding to CD47. Administered by itself, KWAR23 is inert, but given in combination with tumor-opsonizing monoclonal antibodies, KWAR23 greatly augments myeloid cell-dependent killing of a collection of hematopoietic and nonhematopoietic human tumor-derived cell lines. Following KWAR23 antibody treatment in a human SIRPA knockin mouse model, both neutrophils and macrophages infiltrate a human Burkitt's lymphoma xenograft and inhibit tumor growth, generating complete responses in the majority of treated animals. We further demonstrate that a bispecific anti-CD70/SIRPα antibody outperforms individually delivered antibodies in specific types of cancers. These studies demonstrate that SIRPα blockade induces potent antitumor activity by targeting multiple myeloid cell subsets that frequently infiltrate tumors. Thus, KWAR23 represents a promising candidate for combination therapy.


Assuntos
Anticorpos Biespecíficos/farmacologia , Anticorpos Monoclonais/farmacologia , Anticorpos Antineoplásicos/farmacologia , Antígenos de Diferenciação/imunologia , Linfoma de Burkitt/terapia , Fagocitose/efeitos dos fármacos , Receptores Imunológicos/imunologia , Animais , Antígenos de Diferenciação/genética , Linfoma de Burkitt/genética , Linfoma de Burkitt/imunologia , Linfoma de Burkitt/patologia , Ligante CD27/genética , Ligante CD27/imunologia , Antígeno CD47/genética , Antígeno CD47/imunologia , Linhagem Celular Tumoral , Terapia Combinada/métodos , Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Imunoterapia/métodos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Transgênicos , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Ligação Proteica , Receptores Imunológicos/genética , Transgenes , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Proc Natl Acad Sci U S A ; 109(17): 6662-7, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22451913

RESUMO

CD47, a "don't eat me" signal for phagocytic cells, is expressed on the surface of all human solid tumor cells. Analysis of patient tumor and matched adjacent normal (nontumor) tissue revealed that CD47 is overexpressed on cancer cells. CD47 mRNA expression levels correlated with a decreased probability of survival for multiple types of cancer. CD47 is a ligand for SIRPα, a protein expressed on macrophages and dendritic cells. In vitro, blockade of CD47 signaling using targeted monoclonal antibodies enabled macrophage phagocytosis of tumor cells that were otherwise protected. Administration of anti-CD47 antibodies inhibited tumor growth in orthotopic immunodeficient mouse xenotransplantation models established with patient tumor cells and increased the survival of the mice over time. Anti-CD47 antibody therapy initiated on larger tumors inhibited tumor growth and prevented or treated metastasis, but initiation of the therapy on smaller tumors was potentially curative. The safety and efficacy of targeting CD47 was further tested and validated in immune competent hosts using an orthotopic mouse breast cancer model. These results suggest all human solid tumor cells require CD47 expression to suppress phagocytic innate immune surveillance and elimination. These data, taken together with similar findings with other human neoplasms, show that CD47 is a commonly expressed molecule on all cancers, its function to block phagocytosis is known, and blockade of its function leads to tumor cell phagocytosis and elimination. CD47 is therefore a validated target for cancer therapies.


Assuntos
Antígenos de Diferenciação/metabolismo , Antígeno CD47/imunologia , Neoplasias/imunologia , RNA Mensageiro/genética , Receptores Imunológicos/metabolismo , Anticorpos/imunologia , Antígeno CD47/genética , Divisão Celular/imunologia , Citometria de Fluxo , Humanos , Neoplasias/patologia , Neoplasias/terapia , Fagocitose/imunologia , Prognóstico , Análise de Sobrevida
3.
Transl Res ; 155(1): 27-34, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20004359

RESUMO

alpha- and beta-Adrenergic receptor agonists induce an inotropic response in the adult heart by promoting the phosphorylation of several regulatory proteins, including myosin-binding protein C (MyBP-C), cardiac troponin I (cTnI), and phospholamban (PLB). However, the adrenergic-induced phosphorylation of these proteins has not been characterized in the developing heart. Accordingly, we evaluated MyBP-C, cTnI, and PLB phosphorylation in cultured neonatal rat cardiomyocytes (NRCMs) after alpha- and beta-receptor activation with phenylephrine and isoproterenol. alpha-Receptor stimulation increased, whereas beta-receptor activation reduced MyBP-C phosphorylation. Isoelectric-focusing experiments indicated that the amount of monophosphorylated MyBP-C was sensitive to alpha-adrenergic activation, but diphosphorylated and triphosphorylated MyBP-C levels were largely unaffected. The phosphorylation of cTnI and PLB was consistent with the mechanism observed in adult hearts: alpha- and beta-Receptor stimulation phosphorylated both proteins. For cTnI, the greatest difference associated with beta-receptor activation was observed in the diphosphorylated state, whereas alpha-receptor activation was associated with a marked increase in the tetraphosphorylated protein and absence of the unphosphorylated state. Despite these apparent changes in cTnI and PLB phosphorylation, beta-receptor activation failed to alter calcium transients in NRCMs. Collectively, these findings suggest that, unlike cTnI and PLB, MyBP-C and inotropy are not coupled to beta-adrenergic stimulation in NRCMs. Therefore, cTnI and PLB probably play a more central role in modulating contractile function in NRCMs in response to catecholamines than does MyBP-C, and MyBP-C may have a structural role in stabilizing thick filament assembly rather than influencing cross-bridge formation in developing hearts.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Miócitos Cardíacos/fisiologia , Receptores Adrenérgicos alfa/fisiologia , Receptores Adrenérgicos beta/fisiologia , Troponina I/metabolismo , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Isoproterenol/farmacologia , Contração Miocárdica , Fosforilação , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...