Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(18): 20021-20029, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737026

RESUMO

The growing requirement for real-time monitoring of health factors such as heart rate, temperature, and blood glucose levels has resulted in an increase in demand for electrochemical sensors. This study focuses on enzyme-free glucose sensors based on 2D-MoS2 nanostructures explored by simple hydrothermal route. The 2D-MoS2 nanostructures were characterized by powder X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and XPS techniques and were immobilized at GCE to obtain MoS2-GCE interface. The fabricated interface was characterized by electrochemical impedance spectroscopy which shows less charge transfer resistance and demonstrated superior electrocatalytic properties of the modified surface. The sensing interface was applied for the detection of glucose using amperometry. The MoS2-GCE-sensing interface responded effectively as a nonenzymatic glucose sensor (NEGS) over a linearity range of 0.01-0.20 µM with a very low detection limit of 22.08 ng mL-1. This study demonstrates an easy method for developing a MoS2-GCE interface, providing a potential option for the construction of flexible and disposable nonenzymatic glucose sensors (NEGS). Moreover, the fabricated MoS2-GCE electrode precisely detected glucose molecules in real blood serum and urine samples of diabetic and nondiabetic persons. These findings suggest that 2D-MoS2 nanostructured materials show considerable promise as a possible option for hyperglycemia detection and therapy. Furthermore, the development of NEGS might create new prospects in the glucometer industry.

2.
Heliyon ; 10(1): e23450, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192770

RESUMO

Hydrogen energy has the potential to be a cost-effective and strong technology for brighter development. Hydrogen fuel production by water electrolyzers has attracted attention. 2D nanocomposites with distinctive properties have been extensively explored for various applications from hydrogen evolution reactions to improving the efficiency of water electrolyzer, which is the most eco-friendly, and high-performance for hydrogen production. Recently, typical 2D nanocomposites such as Metal-Free 2D, TMDs, Mxene, LDH, organic composites, and Heterostructure have recently been thoroughly researched for use in the HER. We discuss effective ways for increasing the HER efficiency of 2D catalysts in this paper, And the unique advantages and mechanisms for specific applications are highlighted. Several essential regulating strategies for developing 2D nanocomposite-based HER electrocatalysts are included such as interface engineering, defect engineering, heteroatom doping, strain & phase engineering, and hybridizing which improve HER kinetics, the electrical conductivity, accessibility to catalytic active sites, and reaction energy barrier can be optimized. Finally, the future prospects for 2D nanocomposites in HER are discussed, as well as a thorough overview of a variety of methodologies for designing 2D nanocomposites as HER electrocatalysts with excellent catalytic performance. We expect that this review will provide a thorough overview of 2D nanocatalysts for hydrogen production.

4.
ACS Omega ; 8(46): 43573-43585, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38027353

RESUMO

We present an enhanced method for synthesizing a novel compound, 1-(4-phenylquinolin-2-yl)propan-1-one (3), through the solvent-free Friedländer quinoline synthesis using poly(phosphoric acid) as an assisting agent. The crystal structure of compound 3 is analyzed using FT-IR, and the chemical shifts of its 1H- and 13C NMR spectra are measured and calculated using B3LYP/6-311G(d,p), CAM-B3LYP/6-311G(d,p), and M06-2X/6-311G(d,p) basis sets in the gas phase. Additionally, the optimized geometry of quinoline 3 is compared with experimental X-ray diffraction values. Through density functional theory calculations, we explore various aspects of the compound's properties, including noncovalent interactions, Hirshfeld surface analysis, nonlinear optical properties, thermodynamic properties, molecular electrostatic potential, and frontier molecular orbitals. These investigations reveal chemically active sites within this quinoline derivative that contribute to its chemical reactivity.

5.
Sci Rep ; 13(1): 20482, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993482

RESUMO

In modern era, deficiency of Vitamin D3 is predominantly due to limited exposure to sunlight and UV radiation resulting from indoor lifestyles. Several studies have revealed that vitamin D deficiency can lead to chronic vascular inflammation, diabetes mellitus, hypertension, congestive left ventricular hypertrophy, and heart failure. This study introduces a green synthesis of novel bimetallic nanoporous composite, CuO/Ag using lemon extract. The synthesized nanoporous material, CuO/Ag@lemon extract was characterized using several analytical techniques, including X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The CuO/Ag@lemon extract nanoparticles were immobilized on glassy carbon electrode (GCE) to prepare modified CuO/Ag@lemon extract-GCE interface. The electrocatalytic and electrochemical properties investigation was carried out on the modified electrode. using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and amperometry for detecting of Vitamin D3. The DPV method displayed a linear response range of 0.02-22.5 µM with a detection limit of 2.62 nM, while the amperometric method showed a broader linear range of 0.25-23.25 µM with a detection limit of 2.70 nM with 82% modified electrode stability. The designed electrode exhibited a positive response to the inclusion of Vitamin D3 with electro-oxidation, reaching steady-state within 3.4 s, with 87% reproducibility within a day. The proposed method offers a rapid and sensitive platform for detection of Vitamin D3 with minimal interference from other molecules. The early diagnosis of Vitamin D3 deficiency using modified electrodes allows for early treatment, thereby preventing severe health complications.


Assuntos
Nanoporos , Reprodutibilidade dos Testes , Colecalciferol , Técnicas Eletroquímicas/métodos , Carbono/química , Eletrodos , Limite de Detecção
6.
Sci Rep ; 13(1): 16909, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805628

RESUMO

Production and utilization of grey and blue hydrogen is responsible for emission of millions of tons of carbon dioxide (CO2) across the globe. This increased emission of CO2 has severe repercussions on the planet earth and in particular on climate change. Here in, we explored advance bimetallic (BM) CuO/Ag and trimetallic (TM) CuO/Ag/NiO based nanoporous materials supported with silica nanoparticles (SiNPs) via sol-gel route. The explored nanocatalysts were characterized by Powder X-ray diffraction (P-XRD), scanning electron microscopy (SEM), transmittance electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopic techniques. These advance nanocatalysts were evaluated for the green hydrogen production through electrocatalysis and photocatalysis. The catalysts exhibited an exceptional catalytic performance, the onset potential for hydrogen evolution reaction (HER) was determined to be - 0.9 V BMSiNPs-GCE and - 0.7 V (vs Ag/AgCl) for TMSiNPs-GCE, whereas η@10 for BMSiNPs-GCE and TMSiNPs-GCE is - 1.26 and - 1.00 V respectively. Significantly, the TMSiNPs composite and the BMSiNPs composite exhibited superior photochemical H2 evolution rates of 1970.72 mmol h-1 g-1 and 1513.97 mmol h-1 g-1, respectively. The TMSiNPs catalyst presents a highly promising material for HER. This study reveals a cost-effective approach to develop sustainable and resourceful electrocatalysts for HER.

7.
Curr Drug Deliv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37718525

RESUMO

Ulcerative colitis (UC) and Crohn's disease (CD) are two types of idiopathic inflammatory bowel disease (IBD) that are increasing in frequency and incidence worldwide, particularly in highly industrialized countries. Conventional tablets struggle to effectively deliver anti-inflammatory drugs since the inflammation is localized in different areas of the colon in each patient. The goal of 3D printing technology in pharmaceutics is to create personalized drug delivery systems (DDS) that are tailored to each individual's specific needs. This review provides an overview of existing 3D printing processes, with a focus on extrusion-based technologies, which have received the most attention. Personalized pharmaceutical products offer numerous benefits to patients worldwide, and 3D printing technology is becoming more affordable every day. Custom manufacturing of 3D printed tablets provides innovative ideas for developing a tailored colon DDS. In the future, 3D printing could be used to manufacture personalized tablets for UC patients based on the location of inflammation in the colon, resulting in improved therapeutic outcomes and a better quality of life.

8.
Artigo em Inglês | MEDLINE | ID: mdl-37668757

RESUMO

Silver nanoparticles (AgNPs) possess unmatched chemical, biological, and physical properties that make them unique compounds as antimicrobial, antifungal, antiviral, and anticancer agents. With the increasing drug resistance, AgNPs serve as promising entities for targeted drug therapy against several bacterial, fungal, and viral components. In addition, AgNPs also serve as successful anticancer agents against several cancers, including breast, prostate, and lung cancers. Several works in recent years have been done towards the development of AgNPs by using plant extracts like flowers, leaves, bark, root, stem, and whole plant parts. The green method of AgNP synthesis thus has several advantages over chemical and physical methods, especially the low cost of synthesis, no toxic byproducts, eco-friendly production pathways, can be easily regenerated, and the bio-reducing potential of plant derived nanoparticles. Furthermore, AgNPs are biocompatible and do not harm normally functioning human or host cells. This review provides an exhaustive overview and potential of green synthesized AgNPs that can be used as antimicrobial, antifungal, antiviral, and anticancer agents. After a brief introduction, we discussed the recent studies on the development of AgNPs from different plant extracts, including leaf parts, seeds, flowers, stems, bark, root, and whole plants. In the following section, we highlighted the different therapeutic actions of AgNPs against various bacteria, fungi, viruses, and cancers, including breast, prostate, and lung cancers. We then highlighted the general mechanism of action of AgNPs. The advantages of the green synthesis method over chemical and physical methods were then discussed in the article. Finally, we concluded the review by providing future perspectives on this promising field in nanotechnology.

9.
Environ Res ; 238(Pt 2): 116909, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37673119

RESUMO

Xenobiotic pollution in environment is a potential risk to marine life, and human health. Nanobiotechnology is an advanced and emerging solution for the removal of environmental pollutants. Adsorption-based technologies are being used to alleviate the global prevalence of xenobiotics like dyes, due to their high efficacy and cost effectiveness. Current study explored the potential of nanobiochar syntehsized via ultrasonication and centrifugation from rice husk for dye removal from water. It involves the synthesis of nanobiochar from rice husk biochar for removal of Safranin, Malachite green, and a mixture of both from aqueous water. Biochar was synthesized through pyrolysis at 600 °C for 2 h. To convert it into nanobiochar, sonication and centrifugation techniques were applied. The yield obtained was 27.5% for biochar and 0.9% for nanobiochar. Nanobiochar analysis through Fourier-Transform Spectrometer (FTIR), X-ray Power Diffraction (XRD) and scanning electron microscopy (SEM) suggested its crystalline nature having minerals rich in silicon, with a cracked and disintegrated carbon structure due to high temperature and processing treatments. Removal of dyes by nanobiochar was evaluated by changing different physical parameters i.e., nanobiochar dose, pH, and temperature. Pseudo-first order model and pseudo-second order model were applied to studying the adsorption kinetics mechanism. Kinetics for adsorption of dyes followed the pseudo-second order model suggesting the removal of dyes by process of chemical sorption. High adsorption was found at a higher concentration of nanobiochar, high temperature, and neutral pH. Maximum elimination percentages of safranin, malachite green, and a mixture of dyes were obtained as 91.7%, 87.5%, and 85% respectively. We conclude that nanobiochar could be a solution for dye removal from aqueous media.


Assuntos
Oryza , Poluentes Químicos da Água , Humanos , Oryza/química , Água , Corantes/química , Adsorção , Cinética , Poluentes Químicos da Água/análise , Concentração de Íons de Hidrogênio
10.
Ther Deliv ; 14(4): 311-329, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37403985

RESUMO

This review explores the potential of photonic nanoparticles for cancer theranostics. Photonic nanoparticles offer unique properties and photonics capabilities that make them promising materials for cancer treatment, particularly in the presence of near-infrared light. However, the size of the particles is crucial to their absorption of near-infrared light and therapeutic potential. The limitations and challenges associated with the clinical use of photonic nanoparticles, such as toxicity, immune system clearance, and targeted delivery to the tumor are also discussed. Researchers are investigating strategies such as surface modification, biodegradable nanoparticles, and targeting strategies to improve biocompatibility and accumulation in the tumor. Ongoing research suggests that photonic nanoparticles have potential for cancer theranostics, further investigation and development are necessary for clinical use.


Tiny particles called 'photonic nanoparticles' can be used to help treat cancer. These particles have special properties that allow them to be used with special light to treat cancer. However, the size of the particles is really important, so scientists are trying to find ways to make sure they are the right size. There are also some challenges with using these particles in people, like making sure they don't harm the body and that they go to the right place. Scientists are working on ways to improve the safety of these particles and make sure they go where they need to.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Medicina de Precisão , Óptica e Fotônica , Nanomedicina Teranóstica , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
11.
Med Oncol ; 40(8): 225, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37405480

RESUMO

Pancreatic cancer, one of the most aggressive tumors, has a dismal prognosis because of the low rates of early identification, fast progression, difficulties following surgery, and the ineffectiveness of current oncologic therapies. There are no imaging techniques or biomarkers that can accurately identify, categorize, or predict the biological behavior of this tumor. Exosomes are extracellular vesicles that play a crucial rule in the progression, metastasis, and chemoresistance of pancreatic cancer. They have been verified to be potential biomarkers for pancreatic cancer management. Studying the role of exosomes in pancreatic cancer is substantial. Exosomes are secreted by most eukaryotic cells and participated in intercellular communication. The components of exosomes, including proteins, DNA, mRNA, microRNA, long non-coding RNA, circular RNA, etc., play a crucial role in regulating tumor growth, metastasis, and angiogenesis in the process of cancer development, and can be used as a prognostic marker and/or grading basis for tumor patients. Hereby, in this concise review, we intend to summarize exosomes components and isolation, exosome secretion, function, importance of exosomes in the progression of pancreatic cancer and exosomal miRNAs as possible pancreatic cancer biomarkers. Finally, the application potential of exosomes in the treatment of pancreatic cancer, which provides theoretical supports for using exosomes to serve precise tumor treatment in the clinic, will be discussed.


Assuntos
Exossomos , MicroRNAs , Neoplasias Pancreáticas , Humanos , Exossomos/genética , Neoplasias Pancreáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Pancreáticas
12.
Drug Dev Ind Pharm ; 49(6): 393-404, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37272678

RESUMO

OBJECTIVE: This article critically reviews recent research on the use of trimetallic nanomaterials for the fabrication of non-enzymatic glucose sensors (NEGS), also known as fourth-generation glucose sensors (FGGS). SIGNIFICANCE: Diabetes is a prevalent chronic disease worldwide, and glucose monitoring is crucial for its management. However, conventional enzymatic glucose sensors suffer from several technological drawbacks, and there is a need to develop new-generation glucose sensors that can overcome these limitations. NEGS, particularly those composed of trimetallic nanocomposites, have demonstrated promising results in terms of improved shelf life, higher sensitivity, and simplicity of operation during glucose measurement. METHODS: In this review, we discuss the different trimetallic nanomaterials developed and used by researchers in recent years for glucose detection, including their mechanisms of action. We also provide a brief discussion of the advantages and disadvantages of FGGS-based trimetallic nanomaterials, as well as the industrial challenges in this area of research. RESULTS: Trimetallic nanomaterials for FGGS have shown excellent reproducibility and high stability, making them suitable for continuous glucose monitoring. The different types of trimetallic nanomaterials have varying sensing properties, and their performance can be tuned by controlling their synthesis parameters. CONCLUSION: Trimetallic nanomaterials are a promising avenue for the development of FGGS, recent research has demonstrated their potential for glucose monitoring. However, there are still some challenges that need to be addressed before their widespread adoption, such as their long-term stability and cost-effectiveness. Further research in this area is needed to overcome these challenges and to develop commercially viable FGGS for diabetes management.


Assuntos
Técnicas Biossensoriais , Diabetes Mellitus , Nanocompostos , Humanos , Glicemia , Automonitorização da Glicemia , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos , Diabetes Mellitus/diagnóstico , Glucose
13.
Sci Rep ; 13(1): 6210, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069170

RESUMO

The escalating risk of diabetes and its consequential impact on cardiac, vascular, ocular, renal, and neural systems globally have compelled researchers to devise cost-effective, ultrasensitive, and reliable electrochemical glucose sensors for the early diagnosis of diabetes. Herein, we utilized advanced composite materials based on nanoporous CuO, CuO/Ag, and CuO/Ag/NiO for glucose detection. The crystalline structure and surface morphology of the synthesized materials were ascertained via powder X-ray diffraction (P-XRD), energy dispersive X-ray (EDX) spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. The electro-catalytic properties of the manufactured electrode materials for glucose electro-oxidation in alkaline conditions were probed using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. Notably, the CuO/Ag/NiO electrode material exhibited exceptional performance as a non-enzymatic glucose sensor, displaying a linear range of 0.001-5.50 mM, an ultrahigh sensitivity of 2895.3 µA mM-1 cm-2, and a low detection limit of 0.1 µM. These results suggest that nanoporous CuO/Ag/NiO-based composite materials are a promising candidate for early diagnosis of hyperglycemia and treatment of diabetes. Furthermore, non-enzymatic glucose sensors may pave the way for novel glucometer markets.


Assuntos
Glucose , Nanocompostos , Glucose/análise , Cobre/química , Nanocompostos/química , Espectroscopia Dielétrica , Eletrodos , Técnicas Eletroquímicas
14.
Life Sci ; 323: 121662, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37028545

RESUMO

The signalling system known as mammalian target of rapamycin (mTOR) is believed to be required for several biological activities involving cell proliferation. The serine-threonine kinase identified as mTOR recognises PI3K-AKT stress signals. It is well established in the scientific literature that the deregulation of the mTOR pathway plays a crucial role in cancer growth and advancement. This review focuses on the normal functions of mTOR as well as its abnormal roles in cancer development.


Assuntos
Neoplasias , Sirolimo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias/metabolismo , Carcinogênese , Transformação Celular Neoplásica , Proliferação de Células
15.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36768330

RESUMO

Nanomaterials have been the focus of intensive development and research in the medical and industrial sectors over the past several decades. Some studies have found that these compounds can have a detrimental impact on living organisms, including their cellular components. Despite the obvious advantages of using nanomaterials in a wide range of applications, there is sometimes skepticism caused by the lack of substantial proof that evaluates potential toxicities. The interactions of nanoparticles (NPs) with cells of the immune system and their biomolecule pathways are an area of interest for researchers. It is possible to modify NPs so that they are not recognized by the immune system or so that they suppress or stimulate the immune system in a targeted manner. In this review, we look at the literature on nanomaterials for immunostimulation and immunosuppression and their impact on how changing the physicochemical features of the particles could alter their interactions with immune cells for the better or for the worse (immunotoxicity). We also look into whether the NPs have a unique or unexpected (but desired) effect on the immune system, and whether the surface grafting of polymers or surface coatings makes stealth nanomaterials that the immune system cannot find and get rid of.


Assuntos
Nanopartículas , Nanoestruturas , Nanoestruturas/toxicidade , Nanopartículas/química , Sistema Imunitário , Polímeros/química , Imunização
16.
J Gastrointest Cancer ; 54(2): 368-390, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35285010

RESUMO

PURPOSE: Among all forms of cancers, hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide. There are several treatment options for HCC ranging from loco-regional therapy to surgical treatment. Yet, there is high morbidity and mortality. Recent research focus has shifted towards more effective and less toxic cancer treatment options. Curcumin, the active ingredient in the Curcuma longa plant, has gained widespread attention in recent years because of its multifunctional properties as an antioxidant, anti-inflammatory, antimicrobial, and anticancer agent. METHODS: A systematic search of PubMed, Embase and Google Scholar was performed for studies reporting incidence of HCC, risk factors associated with cirrhosis and experimental use of curcumin as an anti-cancer agent. RESULTS: This review exclusively encompasses the anti-cancer properties of curcumin in HCC globally and it's postulated molecular targets of curcumin when used against liver cancers. CONCLUSIONS: This review is concluded by presenting the current challenges and future perspectives of novel plant extracts derived from C. longa and the treatment options against cancers.


Assuntos
Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Curcumina/farmacologia , Curcumina/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Curcuma , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
17.
Biomed Pharmacother ; 155: 113649, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36108389

RESUMO

Prostate cancer is one of the most common health hazards for men worldwide, specifically in Western countries. Rapid prostate cancer screening by analyzing the prostate-specific antigen present in male serum has brought about a sharp decline in the mortality index of this disease. Immunoassay technology quantifies the target analyte in the sample using the antigen-antibody reaction. Immunoassays are now pivotal in disease diagnostics, drug monitoring, and pharmacokinetics. Recently, immunosensors have gained momentum in delivering better results with high specificity and lower limit of detection (LOD). Nanomaterials like gold, silver, and copper exhibit numerous exceptional features and their use in developing immunosensors have garnered excellent results in the diagnostic field. This review highlights the recent and different immunoassay techniques used to detect prostate-specific antigens and discusses the advances in nanomaterial-based immunosensors to detect prostate cancer efficiently. The review also explores the importance of specific biomarkers and nanomaterials-based biosensors with good selectivity and sensitivity to prostate cancer.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Neoplasias da Próstata , Masculino , Humanos , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Técnicas Eletroquímicas/métodos , Antígeno Prostático Específico , Detecção Precoce de Câncer , Prata , Cobre , Neoplasias da Próstata/diagnóstico , Ouro , Biomarcadores
18.
Chem Biol Interact ; 365: 110081, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35948135

RESUMO

Nanotechnology is an arena of exploration and innovation concerned with building things generally, advancing resources and devices based on highly specific and superior nanomaterials with unmatched properties dependent on their morphology and diameter. 2D materials such as graphene have unique properties and applications varying from imaging, delivery of drugs, and theranostics of diseases. Each 2D material, ranging from the graphene family, MXenes, chalcogenides, and 2D oxides, have a unique potential based on their shape and morphology. In addition, 2D materials have intriguing physiochemical characteristics, increased aspect ratio and associated increased reactivity that make them an ideal contender in multiple applications. This review aims to answer the existing knowledge gaps in various 2D materials having interdisciplinary roles. We have presented a brief overview of the 2D materials, followed by their synthesis methods and techniques. We have also highlighted the different characterization methods used to characterise various 2D materials. Next, we performed an in-depth analysis of the potential toxicities of 2D materials to assess their risks in multiple applications. Lastly, we conclude our review by presenting the challenges and future perspectives of 2D materials as promising forerunners of science and technology.


Assuntos
Grafite , Nanoestruturas , Grafite/química , Nanoestruturas/química , Nanoestruturas/toxicidade , Nanotecnologia/métodos , Óxidos/química
19.
Bioeng Transl Med ; 7(3): e10305, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35599642

RESUMO

With the threat of increasing SARS-CoV-2 cases looming in front of us and no effective and safest vaccine available to curb this pandemic disease due to its sprouting variants, many countries have undergone a lockdown 2.0 or planning a lockdown 3.0. This has upstretched an unprecedented demand to develop rapid, sensitive, and highly selective diagnostic devices that can quickly detect coronavirus (COVID-19). Traditional techniques like polymerase chain reaction have proven to be time-inefficient, expensive, labor intensive, and impracticable in remote settings. This shifts the attention to alternative biosensing devices that can be successfully used to sense the COVID-19 infection and curb the spread of coronavirus cases. Among these, nanomaterial-based biosensors hold immense potential for rapid coronavirus detection because of their noninvasive and susceptible, as well as selective properties that have the potential to give real-time results at an economical cost. These diagnostic devices can be used for mass COVID-19 detection to understand the rapid progression of the infection and give better-suited therapies. This review provides an overview of existing and potential nanomaterial-based biosensors that can be used for rapid SARS-CoV-2 diagnostics. Novel biosensors employing different detection mechanisms are also highlighted in different sections of this review. Practical tools and techniques required to develop such biosensors to make them reliable and portable have also been discussed in the article. Finally, the review is concluded by presenting the current challenges and future perspectives of nanomaterial-based biosensors in SARS-CoV-2 diagnostics.

20.
Bioeng Transl Med ; 7(1): e10248, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35111949

RESUMO

More than five decades have been invested in understanding glucose biosensors. Yet, this immensely versatile field has continued to gain attention from the scientific world to better understand and diagnose diabetes. However, such extensive work done to improve glucose sensing devices has still not yielded desirable results. Drawbacks like the necessity of the invasive finger-pricking step and the lack of optimization of diagnostic interventions still need to be considered to improve the testing process of diabetic patients. To upgrade the glucose-sensing devices and reduce the number of intermediary steps during glucose measurement, fourth-generation glucose sensors (FGGS) have been introduced. These sensors, made using robust electrocatalytic copper nanostructures, improve diagnostic efficiency and cost-effectiveness. This review aims to present the essential scientific progress in copper nanostructure-based FGGS in the past 10 years (2010 to present). After a short introduction, we presented the working principles of these sensors. We then highlighted the importance of copper nanostructures as advanced electrode materials to develop reliable real-time FGGS. Finally, we cover the advantages, shortcomings, and prospects for developing highly sensitive, stable, and specific FGGS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...