Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 353: 141108, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423147

RESUMO

Thin film composite (TFC) reverse osmosis (RO) membrane shows good promise for treating wastewater containing endocrine disrupting chemical (EDC) pollutants. The incorporation of functional materials with exceptional structural and physico-chemical properties offers opportunities for the membranes preparation with enhanced permselectivity and better antifouling properties. The present study aims to improve the EDC removal efficiency of TFC RO membrane using two-dimensional titania nanosheets (TNS). RO membrane was prepared by incorporating TNS in the dense layer of polyamide (PA) layer to form thin film nanocomposite (TFN) membrane. The TNS loading was varied and the influences on membrane morphology, surface hydrophilicity, surface charge, as well as water permeability and rejection of EDC were investigated. The results revealed that the inclusion of TNS in the membrane resulted in the increase of water permeability and EDC rejection. When treating the mixture of bisphenol A (BPA) and caffeine at 100 ppm feed concentration, the TFN membrane incorporated with 0.05% TNS achieved water permeability of 1.45 L/m2·h·bar, which was 38.6% higher than that of unmodified TFC membrane, while maintaining satisfactory rejection of >97%. The enhancement of water permeability for TFN membrane can be attributed to their hydrophilic surface and unique nanochannel structure created by the nanoscale interlayer spacing via staking of TiO2 nanosheets. Furthermore, the 0.05TFN membrane exhibited excellent fouling resistance towards BPA and caffeine pollutants with almost 100% flux recovery for three cycles of operations.


Assuntos
Compostos Benzidrílicos , Disruptores Endócrinos , Poluentes Ambientais , Fenóis , Osmose , Nylons/química , Cafeína , Água/química
2.
Membranes (Basel) ; 11(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34832068

RESUMO

Membrane processes have been extensively employed in diverse applications, specifically in industrial wastewater treatment. The technological development in membrane processes has rapidly advanced and accelerated beyond its common principle and operation. Tremendous efforts have been made in the advancement of membrane materials, fabrication method, membrane modification and integration with other technologies that can augment the existing membrane processes to another level. This review presents the recent development of hollow fiber membranes applied in wastewater treatment and resource recovery. The membrane working principles and treatment mechanism were discussed thoroughly, with the recent development of these hollow fiber membranes highlighted based on several types of membrane application. The current challenges and limitations which may hinder this technology from expanding were critically described to offer a better perspective for this technology to be adopted in various potential applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA