Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 12(13): e16145, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39001580

RESUMO

The dystrophin protein has well-characterized roles in force transmission and maintaining membrane integrity during muscle contraction. Studies have reported decreased expression of dystrophin in atrophying muscles during wasting conditions, and that restoration of dystrophin can attenuate atrophy, suggesting a role in maintaining muscle mass. Phosphorylation of S3059 within the cysteine-rich region of dystrophin enhances binding between dystrophin and ß-dystroglycan, and mimicking phosphorylation at this site by site-directed mutagenesis attenuates myotube atrophy in vitro. To determine whether dystrophin phosphorylation can attenuate muscle wasting in vivo, CRISPR-Cas9 was used to generate mice with whole body mutations of S3059 to either alanine (DmdS3059A) or glutamate (DmdS3059E), to mimic a loss of, or constitutive phosphorylation of S3059, on all endogenous dystrophin isoforms, respectively. Sciatic nerve transection was performed on these mice to determine whether phosphorylation of dystrophin S3059 could attenuate denervation atrophy. At 14 days post denervation, atrophy of tibialis anterior (TA) but not gastrocnemius or soleus muscles, was partially attenuated in DmdS3059E mice relative to WT mice. Attenuation of atrophy was associated with increased expression of ß-dystroglycan in TA muscles of DmdS3059E mice. Dystrophin S3059 phosphorylation can partially attenuate denervation-induced atrophy, but may have more significant impact in less severe modes of muscle wasting.


Assuntos
Distrofina , Músculo Esquelético , Atrofia Muscular , Animais , Fosforilação , Camundongos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/inervação , Músculo Esquelético/patologia , Distrofina/metabolismo , Distrofina/genética , Masculino , Denervação Muscular/métodos , Camundongos Endogâmicos C57BL
2.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602028

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating monogenic skeletal muscle-wasting disorder. Although many pharmacological and genetic interventions have been reported in preclinical studies, few have progressed to clinical trials with meaningful benefit. Identifying therapeutic potential can be limited by availability of suitable preclinical mouse models. More rigorous testing across models with varied background strains and mutations can identify treatments for clinical success. Here, we report the generation of a DMD mouse model with a CRISPR-induced deletion within exon 62 of the dystrophin gene (Dmd) and the first generated in BALB/c mice. Analysis of mice at 3, 6 and 12 months of age confirmed loss of expression of the dystrophin protein isoform Dp427 and resultant dystrophic pathology in limb muscles and the diaphragm, with evidence of centrally nucleated fibers, increased inflammatory markers and fibrosis, progressive decline in muscle function, and compromised trabecular bone development. The BALB/c.mdx62 mouse is a novel model of DMD with associated variations in the immune response and muscle phenotype, compared with those of existing models. It represents an important addition to the preclinical model toolbox for developing therapeutic strategies.


Assuntos
Modelos Animais de Doenças , Distrofina , Camundongos Endogâmicos BALB C , Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/genética , Distrofina/metabolismo , Distrofina/genética , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Camundongos Endogâmicos mdx , Camundongos , Éxons/genética , Masculino , Fibrose , Fenótipo
3.
Nutrients ; 13(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34960110

RESUMO

Gastrointestinal (GI) dysfunction is an important, yet understudied condition associated with Duchenne muscular dystrophy (DMD), with patients reporting bloating, diarrhea, and general discomfort, contributing to a reduced quality of life. In the mdx mouse, the most commonly used mouse model of DMD, studies have confirmed GI dysfunction (reported as altered contractility and GI transit through the small and large intestine), associated with increased local and systemic inflammation. Sulforaphane (SFN) is a natural isothiocyanate with anti-inflammatory and anti-oxidative properties via its activation of Nrf2 signalling that has been shown to improve aspects of the skeletal muscle pathology in dystrophic mice. Whether SFN can similarly improve GI function in muscular dystrophy was unknown. Video imaging and spatiotemporal mapping to assess gastrointestinal contractions in isolated colon preparations from mdx and C57BL/10 mice revealed that SFN reduced contraction frequency when administered ex vivo, demonstrating its therapeutic potential to improve GI function in DMD. To confirm this in vivo, four-week-old male C57BL/10 and mdx mice received vehicle (2% DMSO/corn oil) or SFN (2 mg/kg in 2% DMSO/corn oil) via daily oral gavage five days/week for 4 weeks. SFN administration reduced fibrosis in the diaphragm of mdx mice but did not affect other pathological markers. Gene and protein analysis revealed no change in Nrf2 protein expression or activation of Nrf2 signalling after SFN administration and oral SFN supplementation did not improve GI function in mdx mice. Although ex vivo studies demonstrate SFN's therapeutic potential for reducing colon contractions, in vivo studies should investigate higher doses and/or alternate routes of administration to confirm SFN's potential to improve GI function in DMD.


Assuntos
Gastroenteropatias/tratamento farmacológico , Isotiocianatos/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Sulfóxidos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Colo/patologia , Diafragma/patologia , Modelos Animais de Doenças , Fibrose/metabolismo , Gastroenteropatias/metabolismo , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo
4.
Genome Biol ; 22(1): 310, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34763716

RESUMO

A modified Chromium 10x droplet-based protocol that subsamples cells for both short-read and long-read (nanopore) sequencing together with a new computational pipeline (FLAMES) is developed to enable isoform discovery, splicing analysis, and mutation detection in single cells. We identify thousands of unannotated isoforms and find conserved functional modules that are enriched for alternative transcript usage in different cell types and species, including ribosome biogenesis and mRNA splicing. Analysis at the transcript level allows data integration with scATAC-seq on individual promoters, improved correlation with protein expression data, and linked mutations known to confer drug resistance to transcriptome heterogeneity.


Assuntos
Sequenciamento por Nanoporos/métodos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Animais , Éxons , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Splicing de RNA , RNA Mensageiro , Transcriptoma
5.
Exp Physiol ; 106(7): 1597-1611, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963617

RESUMO

NEW FINDINGS: What is the central question of this study? Striated muscle activator of rho signalling (STARS) is an actin-binding protein that regulates transcriptional pathways controlling muscle function, growth and myogenesis, processes that are impaired in dystrophic muscle: what is the regulation of the STARS pathway in Duchenne muscular dystrophy (DMD)? What is the main finding and its importance? Members of the STARS signalling pathway are reduced in the quadriceps of patients with DMD and in mouse models of muscular dystrophy. Overexpression of STARS in the dystrophic deficient mdx mouse model increased maximal isometric specific force and upregulated members of the actin cytoskeleton and oxidative phosphorylation pathways. Regulating STARS may be a therapeutic approach to enhance muscle health. ABSTRACT: Duchenne muscular dystrophy (DMD) is characterised by impaired cytoskeleton organisation, cytosolic calcium handling, oxidative stress and mitochondrial dysfunction. This results in progressive muscle damage, wasting and weakness and premature death. The striated muscle activator of rho signalling (STARS) is an actin-binding protein that activates the myocardin-related transcription factor-A (MRTFA)/serum response factor (SRF) transcriptional pathway, a pathway regulating cytoskeletal structure and muscle function, growth and repair. We investigated the regulation of the STARS pathway in the quadriceps muscle from patients with DMD and in the tibialis anterior (TA) muscle from the dystrophin-deficient mdx and dko (utrophin and dystrophin null) mice. Protein levels of STARS, SRF and RHOA were reduced in patients with DMD. STARS, SRF and MRTFA mRNA levels were also decreased in DMD muscle, while Stars mRNA levels were decreased in the mdx mice and Srf and Mrtfa mRNAs decreased in the dko mice. Overexpressing human STARS (hSTARS) in the TA muscles of mdx mice increased maximal isometric specific force by 13% (P < 0.05). This was not associated with changes in muscle mass, fibre cross-sectional area, fibre type, centralised nuclei or collagen deposition. Proteomics screening followed by pathway enrichment analysis identified that hSTARS overexpression resulted in 31 upregulated and 22 downregulated proteins belonging to the actin cytoskeleton and oxidative phosphorylation pathways. These pathways are impaired in dystrophic muscle and regulate processes that are vital for muscle function. Increasing the STARS protein in dystrophic muscle improves muscle force production, potentially via synergistic regulation of cytoskeletal structure and energy production.


Assuntos
Distrofia Muscular de Duchenne , Fosforilação Oxidativa , Citoesqueleto de Actina/metabolismo , Animais , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Proteínas dos Microfilamentos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
6.
Mol Metab ; 45: 101157, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359740

RESUMO

OBJECTIVES: Preferential damage to fast, glycolytic myofibers is common in many muscle-wasting diseases, including Duchenne muscular dystrophy (DMD). Promoting an oxidative phenotype could protect muscles from damage and ameliorate the dystrophic pathology with therapeutic relevance, but developing efficacious strategies requires understanding currently unknown biological roles for dystrophin and utrophin in dystrophic muscle adaptation and plasticity. METHODS: Combining whole transcriptome RNA sequencing and mitochondrial proteomics with assessments of metabolic and contractile function, we investigated the roles of dystrophin and utrophin in fast-to-slow muscle remodeling with low-frequency electrical stimulation (LFS, 10 Hz, 12 h/d, 7 d/wk, 28 d) in mdx (dystrophin null) and dko (dystrophin/utrophin null) mice, two established preclinical models of DMD. RESULTS: Novel biological roles in adaptation were demonstrated by impaired transcriptional activation of estrogen-related receptor alpha-responsive genes supporting oxidative phosphorylation in dystrophic muscles. Further, utrophin expression in dystrophic muscles was required for LFS-induced remodeling of mitochondrial respiratory chain complexes, enhanced fiber respiration, and conferred protection from eccentric contraction-mediated damage. CONCLUSIONS: These findings reveal novel roles for dystrophin and utrophin during LFS-induced metabolic remodeling of dystrophic muscle and highlight the therapeutic potential of LFS to ameliorate the dystrophic pathology and protect from contraction-induced injury with important implications for DMD and related muscle disorders.


Assuntos
Adaptação Fisiológica/fisiologia , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Utrofina/metabolismo , Animais , Distrofina/genética , Masculino , Engenharia Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Mitocôndrias/metabolismo , Contração Muscular , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Utrofina/genética
8.
Int J Obes (Lond) ; 44(2): 500-509, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30705392

RESUMO

BACKGROUND: Obesity is associated with development of insulin resistance in adipose tissue (AT). Human obesity has been associated with increased glycogen deposition in adipocytes. Adipocytes synthesise glycogen prior to the formation of lipids. The present study examined adipose glycogen content in obese Zucker rats and the effect of fasting on glycogen-metabolising enzymes. We hypothesised that obesity imposes a blunted response to fasting through impaired activation of glycogen-metabolizing enzymes, which dampens glycogen mobilization in obese Zucker rats. METHODS: We investigated the effect of 24h fasting on AT glycogen metabolism in 12-week old obese Zucker rats. Epididymal fat pads were collected from rats fed ad-libitum and fasted for 24h. Glycogen content, glycogen synthase and phosphorylase enzyme activity, and PKA activity were analysed as well as total and phosphorylated protein content for glycogen-metabolizing enzymes glycogen synthase and phosphorylase, glucose transporter GLUT4, and cAMP-dependent response element binding protein levels. RESULTS: Twelve-week old obese Zucker rats showed increased AT glycogen content (adipose glycogen content [mean ± SD], lean: 3.95 ± 2.78 to 0.75 + 0.69 µg.mg-1; p < 0.005 fed vs fasted, and obese: 5.23 ± 3.38 to 5.019 ± 1.99 µg.mg-1; p = ns fed and fasted and p < 0.005 lean vs obese), and impaired fasting-induced glycogen mobilization following a 24h fast. These defects were associated with dysfunctional glycogen-metabolizing enzymes, characterized by: (1) blunted phosphorylation-mediated activation and downregulated protein expression of glycogen phosphorylase, and (2) an impaired phosphorylation-mediated inactivation of glycogen synthase. Furthermore, these defects were related to impaired fasting-induced protein kinase A (PKA) activation. CONCLUSION: This study provides evidence of a defective glycogen metabolism in the adipose associated with impaired fasting-induced activation of the upstream kinase protein kinase A, which render a converging point to obesity-related primary alterations in carbohydrate and lipid metabolism in the AT.


Assuntos
Tecido Adiposo/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Jejum/fisiologia , Glicogênio/metabolismo , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Feminino , Insulina/metabolismo , Masculino , Ratos , Ratos Zucker
9.
J Neurogastroenterol Motil ; 26(1): 133-146, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31715094

RESUMO

BACKGROUND/AIMS: Patients with Duchenne muscular dystrophy exhibit significant, ongoing impairments in gastrointestinal (GI) function likely resulting from dysregulated nitric oxide production. Compounds increasing neuronal nitric oxide synthase expression and/or activity could improve GI dysfunction and enhance quality of life for dystrophic patients. We used video imaging and spatiotemporal mapping to identify GI dysfunction in mdx dystrophic mice and determine whether dietary intervention to enhance nitric oxide could alleviate aberrant colonic activity in muscular dystrophy. METHODS: Four-week-old male C57BL/10 and mdx mice received a specialized diet either with no supplementation (control) or supplemented (1 g/kg/day) with L-alanine, L-arginine, or L-citrulline for 8 weeks. At the conclusion of treatment, mice were sacrificed by cervical dislocation and colon motility examined by spatiotemporal (ST) mapping ex vivo. RESULTS: ST mapping identified increased contraction number in the mid and distal colon of mdx mice on control and L-alanine supplemented diets relative to C57BL/10 mice (P < 0.05). Administration of either L-arginine or L-citrulline attenuated contraction number in distal colons of mdx mice relative to C57BL/10 mice. CONCLUSIONS: GI dysfunction in Duchenne muscular dystrophy has been sadly neglected as an issue affecting quality of life. ST mapping identified regional GI dysfunction in the mdx dystrophic mouse. Dietary interventions to increase nitric oxide signaling in the GI tract reduced the number of colonic contractions and alleviated colonic constriction at rest. These findings in mdx mice reveal that L-arginine can improve colonic motility and has potential therapeutic relevance for alleviating GI discomfort, improving clinical care, and enhancing quality of life in Duchenne muscular dystrophy.

10.
Sci Rep ; 9(1): 12982, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506484

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked genetic disease characterized by progressive muscle wasting and weakness and premature death. Glucocorticoids (e.g. prednisolone) remain the only drugs with a favorable impact on DMD patients, but not without side effects. We have demonstrated that glycine preserves muscle in various wasting models. Since glycine effectively suppresses the activity of pro-inflammatory macrophages, we investigated the potential of glycine treatment to ameliorate the dystrophic pathology. Dystrophic mdx and dystrophin-utrophin null (dko) mice were treated with glycine or L-alanine (amino acid control) for up to 15 weeks and voluntary running distance (a quality of life marker and strong correlate of lifespan in dko mice) and muscle morphology were assessed. Glycine increased voluntary running distance in mdx mice by 90% (P < 0.05) after 2 weeks and by 60% (P < 0.01) in dko mice co-treated with prednisolone over an 8 week treatment period. Glycine treatment attenuated fibrotic deposition in the diaphragm by 28% (P < 0.05) after 10 weeks in mdx mice and by 22% (P < 0.02) after 14 weeks in dko mice. Glycine treatment augmented the prednisolone-induced reduction in fibrosis in diaphragm muscles of dko mice (23%, P < 0.05) after 8 weeks. Our findings provide strong evidence that glycine supplementation may be a safe, simple and effective adjuvant for improving the efficacy of prednisolone treatment and improving the quality of life for DMD patients.


Assuntos
Modelos Animais de Doenças , Glicinérgicos/administração & dosagem , Glicina/administração & dosagem , Distrofia Muscular Animal/tratamento farmacológico , Distrofia Muscular de Duchenne/tratamento farmacológico , Prednisolona/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Knockout , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia
11.
EMBO J ; 38(24): e102578, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31381180

RESUMO

Exercise stimulates cellular and physiological adaptations that are associated with widespread health benefits. To uncover conserved protein phosphorylation events underlying this adaptive response, we performed mass spectrometry-based phosphoproteomic analyses of skeletal muscle from two widely used rodent models: treadmill running in mice and in situ muscle contraction in rats. We overlaid these phosphoproteomic signatures with cycling in humans to identify common cross-species phosphosite responses, as well as unique model-specific regulation. We identified > 22,000 phosphosites, revealing orthologous protein phosphorylation and overlapping signaling pathways regulated by exercise. This included two conserved phosphosites on stromal interaction molecule 1 (STIM1), which we validate as AMPK substrates. Furthermore, we demonstrate that AMPK-mediated phosphorylation of STIM1 negatively regulates store-operated calcium entry, and this is beneficial for exercise in Drosophila. This integrated cross-species resource of exercise-regulated signaling in human, mouse, and rat skeletal muscle has uncovered conserved networks and unraveled crosstalk between AMPK and intracellular calcium flux.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Proteômica/métodos , Molécula 1 de Interação Estromal/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Drosophila , Feminino , Humanos , Masculino , Proteínas de Membrana , Camundongos , Músculo Esquelético/metabolismo , Fosforilação , Conformação Proteica , Ratos , Ratos Wistar , Transdução de Sinais , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética
12.
PLoS One ; 14(2): e0212880, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30811469

RESUMO

Muscles of older animals are more susceptible to injury and regenerate poorly, in part due to a persistent inflammatory response. The janus kinase (Jak)/signal transducer and activator of transcription (Stat) pathway mediates inflammatory signaling and is tightly regulated by the suppressor of cytokine signaling (SOCS) proteins, especially SOCS3. SOCS3 expression is altered in the muscle of aged animals and may contribute to the persistent inflammation and impaired regeneration. To test this hypothesis, we performed myotoxic injuries on mice with a tamoxifen-inducible deletion of SOCS3 specifically within the muscle stem cell compartment. Muscle stem cell-specific SOCS3 deletion reduced muscle mass at 14 days post-injury (-14%, P < 0.01), altered the myogenic transcriptional program, and reduced myogenic fusion based on the number of centrally-located nuclei per muscle fiber. Despite the delay in myogenesis, muscles with a muscle stem cell-specific deletion of SOCS3 were still able to regenerate after a single bout or multiple bouts of myotoxic injury. A reduction in SOCS3 expression in muscle stem cells is unlikely to be responsible for the incomplete muscle repair in aged animals.


Assuntos
Envelhecimento/genética , Deleção de Genes , Regeneração/efeitos dos fármacos , Células-Tronco/citologia , Proteína 3 Supressora da Sinalização de Citocinas/genética , Tamoxifeno/efeitos adversos , Envelhecimento/metabolismo , Animais , Células Cultivadas , Feminino , Masculino , Camundongos , Células Musculares/efeitos dos fármacos , Células Musculares/fisiologia , Fator de Transcrição PAX7/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
13.
Cancer Res ; 79(4): 706-719, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30420474

RESUMO

Cancer cachexia is a multifactorial syndrome characterized by a progressive loss of skeletal muscle mass associated with significant functional impairment. Cachexia robs patients of their strength and capacity to perform daily tasks and live independently. Effective treatments are needed urgently. Here, we investigated the therapeutic potential of activating the "alternative" axis of the renin-angiotensin system, involving ACE2, angiotensin-(1-7), and the mitochondrial assembly receptor (MasR), for treating cancer cachexia. Plasmid overexpression of the MasR or pharmacologic angiotensin-(1-7)/MasR activation did not affect healthy muscle fiber size in vitro or in vivo but attenuated atrophy induced by coculture with cancer cells in vitro. In mice with cancer cachexia, the MasR agonist AVE 0991 slowed tumor development, reduced weight loss, improved locomotor activity, and attenuated muscle wasting, with the majority of these effects dependent on the orexigenic and not antitumor properties of AVE 0991. Proteomic profiling and IHC revealed that mechanisms underlying AVE 0991 effects on skeletal muscle involved miR-23a-regulated preservation of the fast, glycolytic fibers. MasR activation is a novel regulator of muscle phenotype, and AVE 0991 has orexigenic, anticachectic, and antitumorigenic effects, identifying it as a promising adjunct therapy for cancer and other serious muscle wasting conditions. SIGNIFICANCE: These findings demonstrate that MasR activation has multiple benefits of being orexigenic, anticachectic, and antitumorigenic, revealing it as a potential adjunct therapy for cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/4/706/F1.large.jpg.See related commentary by Rupert et al., p. 699.


Assuntos
Angiotensina I/metabolismo , Caquexia/prevenção & controle , Carcinoma Ductal Pancreático/prevenção & controle , Atrofia Muscular/prevenção & controle , Neoplasias Pancreáticas/prevenção & controle , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Caquexia/etiologia , Caquexia/patologia , Carcinoma Ductal Pancreático/complicações , Carcinoma Ductal Pancreático/patologia , Estudos de Casos e Controles , Proliferação de Células , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/patologia , Prognóstico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Receptores Acoplados a Proteínas G/genética , Células Tumorais Cultivadas
14.
Skelet Muscle ; 6: 36, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27800152

RESUMO

BACKGROUND: Muscles of old animals are injured more easily and regenerate poorly, attributed in part to increased levels of circulating pro-inflammatory cytokines. The Janus kinase/signal transducers and activators of transcription (JAK/STAT) signaling cascade is a key mediator of inflammatory cytokine action, and signaling via this pathway is increased in muscles with aging. As a negative regulator of JAK/STAT signaling, a key mediator of myogenic proliferation and differentiation, altered expression of suppressor of cytokine signaling (SOCS3) is likely to have important consequences for muscle regeneration. To model this scenario, we investigated the effect of SOCS3 deletion within mature muscle fibers on injury and repair. We tested the hypothesis that reduced SOCS3 function would alter the inflammatory response and impair muscle regeneration after myotoxic injury. METHODS: Mice with a specific deletion of SOCS3 within mature skeletal muscle fibers were used to assess the effect of SOCS3 deletion on muscle injury and repair. Twelve-week-old or 24-month-old SOCS3 muscle-specific knockout (SOCS3 MKO) mice and littermate controls were either left uninjured or injured with a single injection of notexin (10 µg/ml) into the right tibialis anterior (TA) muscle. At 1, 2, 3, 5, 7, or 14 days post-injury, the right TA muscle was excised and subjected to histological, western immunoblotting, and gene expression analyses. Force production and fatigue were assessed in uninjured muscles and at 7 days post-notexin injury. RESULTS: In uninjured muscles, SOCS3 deletion decreased force production during fatigue but had no effect on the gross or histological appearance of the TA muscles. After notexin injury, deletion of SOCS3 increased STAT3 phosphorylation at day 1 and increased the mRNA expression of the inflammatory cytokine TNF-α, and the inflammatory cell markers F4/80 and CD68 at day 2. Gene expression analysis of the regeneration markers Pax7, MyoD, and Myogenin indicated SOCS3 deletion had no effect on the progression of muscle repair after notexin injury. Inflammation and regeneration were also unchanged in the muscles of 24-month-old SOCS3 MKO mice compared with control. CONCLUSIONS: Loss of SOCS3 expression in mature muscle fibers increased the inflammatory response to myotoxic injury but did not impair muscle regeneration in either adult or old mice. Therefore, reduced SOCS3 expression in muscle fibers is unlikely to underlie impaired muscle regeneration. Further investigation into the role of SOCS3 in other cell types involved in muscle repair is warranted.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Miosite/metabolismo , Regeneração , Proteína 3 Supressora da Sinalização de Citocinas/fisiologia , Animais , Células Cultivadas , Citocinas/metabolismo , Venenos Elapídicos , Feminino , Janus Quinases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Miosite/induzido quimicamente , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismo
15.
Growth Horm IGF Res ; 30-31: 1-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27544574

RESUMO

OBJECTIVE: The insulin-like growth factor binding proteins (IGFBPs) are thought to modulate cell size and homeostasis via IGF-I-dependent and -independent pathways. There is a considerable dearth of information regarding the function of IGFBPs in skeletal muscle, particularly their role in the pathophysiology of Duchenne muscular dystrophy (DMD). In this study we tested the hypothesis that intramuscular IGFBP-2 overexpression would ameliorate the pathology in mdx dystrophic mice. DESIGN: 4week old male C57Bl/10 and mdx mice received a single intramuscular injection of AAV6-empty or AAV6-IGFBP-2 vector into the tibialis anterior muscle. At 8weeks post-injection the effect of IGFBP-2 overexpression on the structure and function of the injected muscle was assessed. RESULTS: AAV6-mediated IGFBP-2 overexpression in the tibialis anterior (TA) muscles of 4-week-old C57BL/10 and mdx mice reduced the mass of injected muscle after 8weeks, inducing a slower muscle phenotype in C57BL/10 but not mdx mice. Analysis of inflammatory and fibrotic gene expression revealed no changes between control and IGFBP-2 injected muscles in dystrophic (mdx) mice. CONCLUSIONS: Together these results indicate that the IGFBP-2-induced promotion of a slower muscle phenotype is impaired in muscles of dystrophin-deficient mdx mice, which contributes to the inability of IGFBP-2 to ameliorate the dystrophic pathology. The findings implicate the dystrophin-glycoprotein complex (DGC) in the signaling required for this adaptation.


Assuntos
Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Músculo Esquelético/metabolismo , Animais , Modelos Animais de Doenças , Fibrose/genética , Inflamação/genética , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne , Fenótipo , Transcriptoma
16.
J Neurosci Res ; 94(5): 389-400, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26864466

RESUMO

This study seeks to determine whether knockdown of basal forebrain p75 neurotrophin receptor (p75(NTR) ) expression elicits increased hippocampal choline acetyltransferase (ChAT) activity in mature animals. Antisense (AS) oligonucleotides (oligos) targeting p75(NTR) were infused into the medial septal area of mature rats continuously for 4 weeks. In all rats, the cannula outlet was placed equidistant between the left and the right sides of the vertical diagonal band of Broca. We tested phosphorothioate (PS), morpholino (Mo), and gapmer (mixed PS/RNA) oligos. Gapmer AS infusions of 7.5 and 22 µg/day decreased septal p75(NTR) mRNA by 34% and 48%, respectively. The same infusions increased hippocampal ChAT activity by 41% and 55%. Increased hippocampal ChAT activity correlated strongly with septal p75(NTR) downregulation in individual rats. Infusions of PS and Mo AS oligos did not downregulate p75(NTR) mRNA or stimulate ChAT activity. These results demonstrate that p75(NTR) can dynamically regulate hippocampal ChAT activity in the mature CNS. They also reveal the different efficacies of three diverse AS oligo chemistries when infused intracerebrally. Among the three types, gapmer oligos worked best.


Assuntos
Prosencéfalo Basal/metabolismo , Colina O-Acetiltransferase/metabolismo , Técnicas de Silenciamento de Genes/métodos , Hipocampo/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Animais , Colina O-Acetiltransferase/genética , Ativação Enzimática/fisiologia , Feminino , Proteínas do Tecido Nervoso , Ratos , Receptores de Fatores de Crescimento , Receptores de Fator de Crescimento Neural/genética
17.
Hum Mol Genet ; 23(25): 6697-711, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25082828

RESUMO

Mutations in dystrophin lead to Duchenne muscular dystrophy, which is among the most common human genetic disorders. Dystrophin nucleates assembly of the dystrophin-glycoprotein complex (DGC), and a defective DGC disrupts an essential link between the intracellular cytoskeleton and the basal lamina, leading to progressive muscle wasting. In vitro studies have suggested that dystrophin phosphorylation may affect interactions with actin or syntrophin, yet whether this occurs in vivo or affects protein function remains unknown. Utilizing nanoflow liquid chromatography mass spectrometry, we identified 18 phosphorylated residues within endogenous dystrophin. Mutagenesis revealed that phosphorylation at S3059 enhances the dystrophin-dystroglycan interaction and 3D modeling utilizing the Rosetta software program provided a structural model for how phosphorylation enhances this interaction. These findings demonstrate that phosphorylation is a key mechanism regulating the interaction between dystrophin and the DGC and reveal that posttranslational modification of a single amino acid directly modulates the function of dystrophin.


Assuntos
Distroglicanas/metabolismo , Proteínas Associadas à Distrofina/metabolismo , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Sequência de Aminoácidos , Animais , Diferenciação Celular , Linhagem Celular , Cisteína/química , Cisteína/metabolismo , Distroglicanas/química , Distroglicanas/genética , Distrofina/química , Distrofina/genética , Proteínas Associadas à Distrofina/química , Proteínas Associadas à Distrofina/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Modelos Moleculares , Dados de Sequência Molecular , Músculo Esquelético/patologia , Atrofia Muscular/genética , Atrofia Muscular/patologia , Mioblastos/citologia , Mioblastos/metabolismo , Fosforilação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Serina/química , Serina/metabolismo , Transdução de Sinais
18.
PLoS One ; 9(7): e101379, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25000590

RESUMO

Muscles can be injured in different ways and the trauma and subsequent loss of function and physical capacity can impact significantly on the lives of patients through physical impairments and compromised quality of life. The relative success of muscle repair after injury will largely determine the extent of functional recovery. Unfortunately, regenerative processes are often slow and incomplete, and so developing novel strategies to enhance muscle regeneration is important. While the capacity to enhance muscle repair by stimulating ß2-adrenoceptors (ß-ARs) using ß2-AR agonists (ß2-agonists) has been demonstrated previously, the exact role ß-ARs play in regulating the regenerative process remains unclear. To investigate ß-AR-mediated signaling in muscle regeneration after myotoxic damage, we examined the regenerative capacity of tibialis anterior and extensor digitorum longus muscles from mice lacking either ß1-AR (ß1-KO) and/or ß2-ARs (ß2-KO), testing the hypothesis that muscles from mice lacking the ß2-AR would exhibit impaired functional regeneration after damage compared with muscles from ß1-KO or ß1/ß2-AR null (ß1/ß2-KO) KO mice. At 7 days post-injury, regenerating muscles from ß1/ß2-KO mice produced less force than those of controls but muscles from ß1-KO or ß2-KO mice did not exhibit any delay in functional restoration. Compared with controls, ß1/ß2-KO mice exhibited an enhanced inflammatory response to injury, which delayed early muscle regeneration, but an enhanced myoblast proliferation later during regeneration ensured a similar functional recovery (to controls) by 14 days post-injury. This apparent redundancy in the ß-AR signaling pathway was unexpected and may have important implications for manipulating ß-AR signaling to improve the rate, extent and efficacy of muscle regeneration to enhance functional recovery after injury.


Assuntos
Diferenciação Celular , Músculo Esquelético/fisiologia , Mioblastos/citologia , Receptores Adrenérgicos beta 1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Regeneração , Animais , Proliferação de Células , Técnicas de Inativação de Genes , Camundongos , Força Muscular , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/citologia , Tamanho do Órgão , Receptores Adrenérgicos beta 1/deficiência , Receptores Adrenérgicos beta 1/genética , Receptores Adrenérgicos beta 2/deficiência , Receptores Adrenérgicos beta 2/genética
19.
PLoS One ; 9(3): e91514, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24626262

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe, genetic muscle wasting disorder characterised by progressive muscle weakness. DMD is caused by mutations in the dystrophin (dmd) gene resulting in very low levels or a complete absence of the dystrophin protein, a key structural element of muscle fibres which is responsible for the proper transmission of force. In the absence of dystrophin, muscle fibres become damaged easily during contraction resulting in their degeneration. DMD patients and mdx mice (an animal model of DMD) exhibit altered metabolic disturbances that cannot be attributed to the loss of dystrophin directly. We tested the hypothesis that glycogen metabolism is defective in mdx dystrophic mice. RESULTS: Dystrophic mdx mice had increased skeletal muscle glycogen (79%, (P<0.01)). Skeletal muscle glycogen synthesis is initiated by glycogenin, the expression of which was increased by 50% in mdx mice (P<0.0001). Glycogen synthase activity was 12% higher (P<0.05) but glycogen branching enzyme activity was 70% lower (P<0.01) in mdx compared with wild-type mice. The rate-limiting enzyme for glycogen breakdown, glycogen phosphorylase, had 62% lower activity (P<0.01) in mdx mice resulting from a 24% reduction in PKA activity (P<0.01). In mdx mice glycogen debranching enzyme expression was 50% higher (P<0.001) together with starch-binding domain protein 1 (219% higher; P<0.01). In addition, mdx mice were glucose intolerant (P<0.01) and had 30% less liver glycogen (P<0.05) compared with control mice. Subsequent analysis of the enzymes dysregulated in skeletal muscle glycogen metabolism in mdx mice identified reduced glycogenin protein expression (46% less; P<0.05) as a possible cause of this phenotype. CONCLUSION: We identified that mdx mice were glucose intolerant, and had increased skeletal muscle glycogen but reduced amounts of liver glycogen.


Assuntos
Glicogênio/metabolismo , Fígado/metabolismo , Fígado/fisiopatologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Modelos Animais de Doenças , Distrofina/fisiologia , Intolerância à Glucose , Glicogênio Fosforilase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Fenótipo
20.
Fibrogenesis Tissue Repair ; 7(1): 1, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24476069

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is a severe and progressive muscle-wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilising protein dystrophin. Dystrophic muscle fibres are susceptible to injury and degeneration, and impaired muscle regeneration is associated with fibrotic deposition that limits the efficacy of potential pharmacological, cell- and gene-based therapies. Novel treatments that can prevent or attenuate fibrosis have important clinical merit for DMD and related neuromuscular diseases. We investigated the therapeutic potential for tranilast, an orally bioavailable anti-allergic agent, to prevent fibrosis in skeletal muscles of mdx dystrophic mice. RESULTS: Three-week-old C57Bl/10 and mdx mice received tranilast (~300 mg/kg) in their food for 9 weeks, after which fibrosis was assessed through histological analyses, and functional properties of tibialis anterior muscles were assessed in situ and diaphragm muscle strips in vitro. Tranilast administration did not significantly alter the mass of any muscles in control or mdx mice, but it decreased fibrosis in the severely affected diaphragm muscle by 31% compared with untreated mdx mice (P < 0.05). A similar trend of decreased fibrosis was observed in the tibialis anterior muscles of mdx mice (P = 0.10). These reductions in fibrotic deposition were not associated with improvements in maximum force-producing capacity, but we did observe small but significant improvements in the resistance to fatigue in both the diaphragm and TA muscles of mdx mice treated with tranilast. CONCLUSION: Together these findings demonstrate that administration of potent antifibrotic compounds such as tranilast could help preserve skeletal muscle structure, which could ultimately increase the efficacy of pharmacological, cell and gene replacement/correction therapies for muscular dystrophy and related disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...