Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 247: 119120, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33189979

RESUMO

2-Chloro-4-fluorotoluene was investigated using a combination of molecular jet Fourier transform microwave spectroscopy in the frequency range from 5 to 21 GHz and quantum chemistry. The molecule experiences an internal rotation of the methyl group, which causes fine splittings of all rotational transitions into doublets with separation on the order of a few tens of kHz. In addition, hyperfine effects originating from the chlorine nuclear quadrupole moment coupling its nuclear spin to the end-over-end rotation of the molecule are observed. The torsional barrier was derived using both the rho and the combined-axis-method, giving a value of 462.5(41) cm-1. Accurate rotational constants and quadrupole coupling constants were determined for the 35Cl and 37Cl isotopologues and compared with Bailey's semi-experimental quantum chemical predictions. The gas phase molecular structure was deduced from the experimental rotational constants supplemented with those calculated by quantum chemistry at various levels of theory. The values of the methyl torsional barrier and chlorine nuclear quadrupole coupling constants were compared with the theoretical predictions and with those of other chlorotoluene derivatives.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 242: 118709, 2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-32736224

RESUMO

The rotational spectra of 3-fluorotoluene and its seven 13C isotopic species have been recorded at natural abundance in the frequency range from 4 to 26 GHz using a pulsed molecular jet Fourier transform microwave spectrometer. The molecular structure comprising bond lengths and angles as well as parameters describing the methyl torsion were determined with high accuracy. Due to the very low torsional barrier of 17 cm-1, the lowest torsional states of the vibrational ground state exhibited large splittings in the spectrum, which were modeled satisfactorily with a modified version of the program XIAM and the program aixPAM, both developed to treat the methyl internal rotation effects. They were also applied to refit the microwave data of 3,4-difluorotoluene to standard deviations close to measurement accuracy.

3.
Phys Chem Chem Phys ; 22(20): 11490-11497, 2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32391831

RESUMO

The internal rotation of methyl groups and nuclear quadrupole moments of the halogens Cl, Br, I in o-halotoluenes cause complex spectral fine and hyperfine structures in rotational spectra arising from angular momentum coupling. Building on the existing data regarding o-fluorotoluene and o-chlorotoluene, the investigations of o-bromotoluene and o-iodotoluene allow for a complete analysis of the homologous series of o-halogenated toluenes. The trend in the methyl barriers to internal rotation rising with the size of the halogen can be rationalised by repulsion effects as predicted by MP2 calculations. Furthermore, the analysis of the observed quadrupole coupling serves as a quantitative intra-molecular probe, e.g. for the explanation of the relative reaction yields in the nitration of halotoluenes, related to the different π-bond character of the C-X bond depending on the position of substitution.

4.
Phys Chem Chem Phys ; 22(9): 5170-5177, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32083625

RESUMO

An accurate semiexperimental equilibrium structure of succinic anhydride has been determined from a combination of experiment and theory. The cm-wave and mm-wave rotational spectra of succinic anhydride, 3,4-dihydrofuran-2,5-dione, were recorded in a pulsed supersonic jet using Fourier-transform microwave spectroscopy and in a free-jet using mm-wave absorption spectroscopy. Many lines in the cm-wave spectrum show fine structure and after eliminating all other possibilities the origin of this fine structure is determined to be from spin-spin interaction. Accurate rotational and quartic centrifugal distortion constants are determined. Assignments of 13C and 18O singly substituted isotopologues in natural abundance were used to obtain a substitution geometry for the heavy atoms of succinic anhydride. Theoretical approaches permitted the calculation of a Born-Oppenheimer ab initio structure and the determination of a semiexperimental equilibrium structure in which computed rovibrational corrections were utilized to convert vibrational ground state rotational constants into equilibrium constants. The agreement between the semiexperimental structure and the Born-Oppenheimer ab initio structure is excellent. Succinic anhydride has been shown to have a planar heavy atom equilibrium structure with the effects of a large amplitude vibration apparent in the resultant rotational constants.

5.
Phys Chem Chem Phys ; 17(39): 26463-70, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26393883

RESUMO

Pure six-fold symmetry (V6) internal rotation poses significant challenges to experimental and theoretical determination, as the very low torsional barriers result in huge tunneling splittings difficult to identify and to model. Here we resolved the methyl group internal rotation dynamics of 2,6- and 3,5-difluorotoluene using a newly developed computer code especially adapted to V6 problems. The jet-cooled rotational spectra of the title molecules in the 5-25 GHz region revealed internal rotation tunneling doublings of up to 3.6 GHz, which translated in methyl group potential barriers of V6 = 0.14872(24) and 0.0856(10) kJ mol(-1), respectively, in the vibrational ground-state. Additional information on Stark effects and carbon isotopic species in natural abundance provided structural data and the electric dipole moments for both molecules. Ab initio calculations at the MP2 level do not reproduce the tiny torsional barriers, calling for experiments on other systems and additional theoretical models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...