Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dent Med Probl ; 61(1): 77-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38415389

RESUMO

BACKGROUND: Platelet-rich fibrin (PRF) is widely used in periodontics for its wound healing potential. Two major variations of PRF are the original leukocyteand platelet-rich fibrin (L-PRF) and the modified lowspeed advanced PRF (A-PRF). OBJECTIVES: The aim of the present study was to evaluate and compare the conventional L-PRF protocol and the low-speed A-PRF protocol in terms of angiogenic potential of PRF, using an in vivo chorioallantoic membrane (CAM) assay. MATERIAL AND METHODS: Fifteen fertile Giriraja eggs were procured and after a 3-day incubation period, randomly allotted into 3 groups: control; L-PRF; and A-PRF. A total of 20 mL of blood was collected from systemically healthy male volunteers aged 18-24 years, using a standard protocol. The PRF samples were inoculated on the CAM of the eggs. On the 10th day, the eggs were reopened and photographed. The parameters assessed were the number, length, size, and density of blood vessels, as well as the number of junctions formed. The photographs were analyzed using the ImageJ and ProgRes® CapturePro software. RESULTS: Seven days after inoculation, both the A-PRF and L-PRF groups exhibited significantly better results than the control group in terms of the number (59.20 ±6.61 vs. 48.80 ±5.07 vs. 19.20 ±6.98), length (25,000 ±1,813.10 µm vs. 17,000 ±282.90 µm vs. 8,000 ±184.49 µm), size (230,000 ±15,054.00 µm2 vs. 200,000 ±8,295.27 µm2 vs. 150,000 ±4,105.16 µm2), and density (central: 9,100 ±296.78 vs. 5,370 ±272.42 vs. 1,420 ±564.36; peripheral: 9,094 ±400.14 vs. 3,370 ±479.39 vs. 5,420 ±746.73) of blood vessels, as well as the number of junctions formed (52 ±3.81 vs. 41 ±1.58 vs. 33 ±4.64), respectively. CONCLUSIONS: The angiogenic potential was increased by the exposure to both L-PRF and A-PRF. However, A-PRF demonstrated statistically significant benefits in terms of the number, length, size, and density of blood vessels, as well as the number of junctions formed in comparison with the control and L-PRF groups.


Assuntos
Fibrina Rica em Plaquetas , Animais , Humanos , Masculino , Membrana Corioalantoide , Leucócitos , Adolescente , Adulto Jovem , Distribuição Aleatória
2.
Molecules ; 28(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067464

RESUMO

Ultrasound-mediated cavitation shows great promise for improving targeted drug delivery across a range of clinical applications. Cavitation nuclei-sound-sensitive constructs that enhance cavitation activity at lower pressures-have become a powerful adjuvant to ultrasound-based treatments, and more recently emerged as a drug delivery vehicle in their own right. The unique combination of physical, biological, and chemical effects that occur around these structures, as well as their varied compositions and morphologies, make cavitation nuclei an attractive platform for creating delivery systems tuned to particular therapeutics. In this review, we describe the structure and function of cavitation nuclei, approaches to their functionalization and customization, various clinical applications, progress toward real-world translation, and future directions for the field.


Assuntos
Sistemas de Liberação de Medicamentos , Microbolhas , Ultrassonografia
3.
Front Neurol ; 14: 1251885, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808507

RESUMO

Objective: This study aimed to evaluate the progression of clinical and preclinical trials in Charcot-Marie-Tooth (CMT) disorders. Background: CMT has historically been managed symptomatically and with genetic counseling. The evolution of molecular and pathologic understanding holds a therapeutic promise in gene-targeted therapies. Methods: ClinicalTrials.gov from December 1999 to June 2022 was data extracted for CMT with preclinical animal gene therapy trials also reviewed by PubMed search. Results: The number of active trials was 1 in 1999 and 286 in 2022. Academic settings accounted for 91% and pharmaceutical companies 9%. Of the pharmaceutical and academic trials, 38% and 28%, respectively, were controlled, randomized, and double-blinded. Thirty-two countries participated: the United States accounted for 26% (75/286). In total, 86% of the trials were classified as therapeutic: 50% procedural (21% wrist/elbow surgery; 22% shock wave and hydrodissection therapy), 23% investigational drugs, 15% devices, and 11% physical therapy. Sixty-seven therapeutic trials (49%) were designated phases 1-2 and 51% phases 3-4. The remaining 14% represent non-therapeutic trials: diagnostic testing (3%), functional outcomes (4%), natural history (4%), and standard of care (3%). One-hundred and three (36%) resulted in publications. Phase I human pharmaceutical trials are focusing on the safety of small molecule therapies (n = 8) and AAV and non-viral gene therapy (n = 3). Preclinical animal gene therapy studies include 11 different CMT forms including viral, CRISPR-Cas9, and nanoparticle delivery. Conclusion: Current CMT trials are exploring procedural and molecular therapeutic options with substantial participation of the pharmaceutical industry worldwide. Emerging drug therapies directed at molecular pathogenesis are being advanced in human clinical trials; however, the majority remain within animal investigations.

4.
ACS Nano ; 17(11): 9906-9918, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37222568

RESUMO

The arrangement of nanoscale building blocks into patterns with microscale periodicity is challenging to achieve via self-assembly processes. Here, we report on the phase-transition-driven collective assembly of gold nanoparticles in a thermotropic liquid crystal. A temperature-induced transition from the isotropic to the nematic phase under anchoring-driven planar alignment leads to the assembly of individual nanometer-sized particles into arrays of micrometer-sized agglomerates, whose size and characteristic spacing can be tuned by varying the cooling rate. Phase field simulations coupling the conserved and nonconserved order parameters exhibit a similar evolution of the morphology as the experimental observations. This fully reversible process offers control over structural order on the microscopic level and is an interesting model system for the programmable and reconfigurable patterning of nanocomposites with access to micrometer-sized periodicities.

5.
Adv Healthc Mater ; 11(20): e2200941, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35904257

RESUMO

3D cell culture formats more closely resemble tissue architecture complexity than 2D systems, which are lacking most of the cell-cell and cell-microenvironment interactions of the in vivo milieu. Scaffold-based systems integrating natural biomaterials are extensively employed in tissue engineering to improve cell survival and outgrowth, by providing the chemical and physical cues of the natural extracellular matrix (ECM). Using the freeze-drying technique, porous 3D composite scaffolds consisting of poly(3,4-ethylene-dioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS), containing ECM components (i.e., collagen, hyaluronic acid, and laminin) are engineered for hosting neuronal cells. The resulting scaffolds exhibit a highly porous microstructure and good conductivity, determined by scanning electron microscopy and electrochemical impedance spectroscopy, respectively. These supports boast excellent mechanical stability and water uptake capacity, making them ideal candidates for cell infiltration. SH-SY5Y human neuroblastoma cells show enhanced cell survival and proliferation in the presence of ECM compared to PEDOT:PSS alone. Whole-cell patch-clamp recordings acquired from differentiated SHSY5Y cells in the scaffolds demonstrate that ECM constituents promote neuronal differentiation in situ. These findings reinforce the usability of 3D conducting supports as engineered highly biomimetic and functional in vitro tissue-like platforms for drug or disease modeling.


Assuntos
Neuroblastoma , Alicerces Teciduais , Humanos , Materiais Biocompatíveis , Diferenciação Celular , Proliferação de Células , Colágeno/química , Etilenos/análise , Matriz Extracelular/química , Ácido Hialurônico , Laminina , Polímeros , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Microambiente Tumoral
6.
Acta Biomater ; 135: 150-163, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34454082

RESUMO

Recreating the cell niche of virtually all tissues requires composite materials fabricated from multiple extracellular matrix (ECM) macromolecules. Due to their wide tissue distribution, physical attributes and purity, collagen, and more recently, tropoelastin, represent two appealing ECM components for biomaterials development. Here we blend tropoelastin and collagen, harnessing the cell-modulatory properties of each biomolecule. Tropoelastin was stably co-blended into collagen biomaterials and was retained after EDC-crosslinking. We found that human dermal fibroblasts (HDF), rat glial cells (Rugli) and HT1080 fibrosarcoma cells ligate to tropoelastin via EDTA-sensitive and EDTA-insensitive receptors or do not ligate with tropoelastin, respectively. These differing elastin-binding properties allowed us to probe the cellular response to the tropoelastin-collagen composites assigning specific bioactivity to the collagen and tropoelastin component of the composite material. Tropoelastin addition to collagen increased total Rugli cell adhesion, spreading and proliferation. This persisted with EDC-crosslinking of the tropoelastin-collagen composite. Tropoelastin addition did not affect total HDF and HT1080 cell adhesion; however, it increased the contribution of cation-independent adhesion, without affecting the cell morphology or, for HT1080 cells, proliferation. Instead, EDC-crosslinking dictated the HDF and HT1080 cellular response. These data show that a tropoelastin component dominates the response of cells that possess non-integrin based tropoelastin receptors. EDC modification of the collagen component directs cell function when non-integrin tropoelastin receptors are not crucial for cell activity. Using this approach, we have assigned the biological contribution of each component of tropoelastin-collagen composites, allowing informed biomaterial design for directed cell function via more physiologically relevant mechanisms. STATEMENT OF SIGNIFICANCE: Biomaterials fabricated from multiple extracellular matrix (ECM) macromolecules are required to fully recreate the native tissue niche where each ECM macromolecule engages with a specific repertoire of cell-surface receptors. Here we investigate combining tropoelastin with collagen as they interact with cells via different receptors. We identified specific cell lines, which associate with tropoelastin via distinct classes of cell-surface receptor. These showed that tropoelastin, when combined with collagen, altered the cell behaviour in a receptor-usage dependent manner. Integrin-mediated tropoelastin interactions influenced cell proliferation and non-integrin receptors influenced cell spreading and proliferation. These data shed light on the interplay between biomaterial macromolecular composition, cell surface receptors and cell behaviour, advancing bespoke materials design and providing functionality to specific cell populations.


Assuntos
Materiais Biocompatíveis , Tropoelastina , Animais , Adesão Celular , Colágeno , Elastina , Ratos
7.
ACS Appl Mater Interfaces ; 13(14): 16876-16886, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33783199

RESUMO

Triboelectric generators are excellent candidates for smart textiles applications due to their ability to convert mechanical energy into electrical energy. Such devices can be manufactured into yarns by coating a conductive core with a triboelectric material, but current triboelectric yarns lack the durability and washing resistance required for textile-based applications. In this work, we develop a unique triboelectric yarn comprising a conducting carbon nanotube (CNT) yarn electrode coated with poly(vinylidene fluoride) (PVDF) fibers deposited by a customized electrospinning process. We show that the electrospun PVDF fibers adhere extremely well to the CNT core, producing a uniform and stable triboelectric coating. The PVDF-CNT coaxial yarn exhibits remarkable triboelectric energy harvesting during fatigue testing with a 33% power output improvement and a peak power density of 20.7 µW cm-2 after 200 000 fatigue cycles. This is potentially due to an increase in the active surface area of the PVDF fiber coating upon repeated contact. Furthermore, our triboelectric yarn meets standard textile industry benchmarks for both abrasion and washing by retaining functionality over 1200 rubbing cycles and 10 washing cycles. We demonstrate the energy harvesting and motion sensing capabilities of our triboelectric yarn in prototype textile-based applications, thereby highlighting its applicability to smart textiles.

8.
Sci Rep ; 11(1): 6562, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753784

RESUMO

Dysregulation of glucagon secretion in type 1 diabetes (T1D) involves hypersecretion during postprandial states, but insufficient secretion during hypoglycemia. The sympathetic nervous system regulates glucagon secretion. To investigate islet sympathetic innervation in T1D, sympathetic tyrosine hydroxylase (TH) axons were analyzed in control non-diabetic organ donors, non-diabetic islet autoantibody-positive individuals (AAb), and age-matched persons with T1D. Islet TH axon numbers and density were significantly decreased in AAb compared to T1D with no significant differences observed in exocrine TH axon volume or lengths between groups. TH axons were in close approximation to islet α-cells in T1D individuals with long-standing diabetes. Islet RNA-sequencing and qRT-PCR analyses identified significant alterations in noradrenalin degradation, α-adrenergic signaling, cardiac ß-adrenergic signaling, catecholamine biosynthesis, and additional neuropathology pathways. The close approximation of TH axons at islet α-cells supports a model for sympathetic efferent neurons directly regulating glucagon secretion. Sympathetic islet innervation and intrinsic adrenergic signaling pathways could be novel targets for improving glucagon secretion in T1D.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Suscetibilidade a Doenças , Ilhotas Pancreáticas/inervação , Sistema Nervoso Simpático/fisiopatologia , Axônios/metabolismo , Biomarcadores , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Imunofluorescência , Regulação da Expressão Gênica , Células Secretoras de Glucagon/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Pâncreas Exócrino/inervação , Pâncreas Exócrino/metabolismo , Células Secretoras de Somatostatina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
9.
Biomaterials ; 254: 120109, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32480093

RESUMO

Due to its ubiquity and versatility in the human body, collagen is an ideal base material for tissue-engineering constructs. Chemical crosslinking treatments allow precise control of the biochemical and mechanical properties through macromolecular modifications to the structure of collagen. In this work, three key facets regarding the collagen crosslinking process are explored. Firstly, a comparison is drawn between the carbodiimide-succinimide (EDC-NHS) system and two emerging crosslinkers utilising alternate chemistries: genipin and tissue transglutaminase (TG2). By characterising the chemical changes upon treatment, the effect of EDC-NHS, genipin and TG2 crosslinking mechanisms on the chemical structure of collagen, and thus the mechanical properties conferred to the substrate is explored. Secondly, the relative importance of mechanical and biochemical cues on cellular phenomena are investigated, including cell viability, integrin-specific attachment, spreading and proliferation. Here, we observe that for human dermal fibroblasts, long-term, stable proliferation is preconditioned by the availability of suitable binding sites, irrespective of the substrate modulus post-crosslinking. Finally, as seen in the graphical abstract we show that by choosing the appropriate crosslinker chemistries, a materials selection map can be drawn for collagen films, encompassing both a range of tensile modulus and fibroblast proliferation which can be modified independently. Thus, in addition to a range of parameters that can be modified in collagen constructs, we demonstrate a route to obtaining tunable bioactivity and mechanics in collagen constructs is uncovered, that is exclusively driven by the crosslinking process.


Assuntos
Corpo Humano , Engenharia Tecidual , Colágeno , Reagentes de Ligações Cruzadas , Humanos , Iridoides , Succinimidas
10.
J R Soc Interface ; 17(165): 20190833, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32316883

RESUMO

Micro-computed X-ray tomography (MicroCT) is one of the most powerful techniques available for the three-dimensional characterization of complex multi-phase or porous microarchitectures. The imaging and analysis of porous networks are of particular interest in tissue engineering due to the ability to predict various large-scale cellular phenomena through the micro-scale characterization of the structure. However, optimizing the parameters for MicroCT data capture and analyses requires a careful balance of feature resolution and computational constraints while ensuring that a structurally representative section is imaged and analysed. In this work, artificial datasets were used to evaluate the validity of current analytical methods by considering the effect of noise and pixel size arising from the data capture, and intrinsic structural anisotropy and heterogeneity. A novel 'segmented percolation method' was developed to exclude the effect of anomalous, non-representative features within the datasets, allowing for scale-invariant structural parameters to be obtained consistently and without manual intervention for the first time. Finally, an in-depth assessment of the imaging and analytical procedures are presented by considering percolation events such as micro-particle filtration and cell sieving within the context of tissue engineering. Along with the novel guidelines established for general pixel size selection for MicroCT, we also report our determination of 3 µm as the definitive pixel size for use in analysing connectivity for tissue engineering applications.


Assuntos
Imageamento Tridimensional , Engenharia Tecidual , Porosidade , Microtomografia por Raio-X
11.
Nanoscale ; 11(32): 15120-15130, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31369017

RESUMO

The piezoelectricity of collagen is purported to be linked to many biological processes including bone formation and wound healing. Although the piezoelectricity of tissue-derived collagen has been documented across the length scales, little work has been undertaken to characterise the local electromechanical properties of processed collagen, which is used as a base for tissue-engineering implants. In this work, three chemically distinct treatments used to form structurally and mechanically stable scaffolds-EDC-NHS, genipin and tissue transglutaminase-are investigated for their effect on collagen piezolectricity. Crosslinking with EDC-NHS is noted to produce a distinct self-assembly of the fibres into bundles roughly 300 nm in width regardless of the collagen origin. These fibre bundles also show a localised piezoelectric response, with enhanced vertical piezoelectricity of collagen. Such topographical features are not observed with the other two chemical treatments, although the shear piezoelectric response is significantly enhanced upon crosslinking. These observations are reconciled by a proposed effect of the crosslinking mechanisms on the molecular and nanostructure of collagen. These results highlight the ability to modify the electromechanical properties of collagen using chemical crosslinking methods.


Assuntos
Colágeno/química , Reagentes de Ligações Cruzadas/química , Módulo de Elasticidade , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Iridoides/química , Iridoides/metabolismo , Microscopia de Força Atômica , Nanoestruturas/química , Proteína 2 Glutamina gama-Glutamiltransferase , Succinimidas/química , Engenharia Tecidual , Transglutaminases/química , Transglutaminases/metabolismo
12.
J Orthop Case Rep ; 8(3): 38-41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30584513

RESUMO

INTRODUCTION: Osteochondroma of the scapula is a rare tumour of the thorax. It constitutes 14.4% of all tumours of the scapula with the ventral surface being the most common site of presentation. The dorsal surface of the scapula is rarely seen as a potential site for the origin of osteochondroma from our review of the literature, which was the case in our patient. Most of the patients presenting with osteochondroma on the dorsal aspect of scapula have been reported to be of the sessile variant. CASE REPORT: We report two rare cases of a pedunculated variety of osteochondroma at an unusual site-dorsal surface of the scapula in a 19-year-old male and a 5-year-old male child. The tumours were excised and the diagnosis was confirmed by histopathological studies. CONCLUSION: This case series is reported for its rarity and its unusual site of presentation. A solitary congenital variant of osteochondroma of the scapula has never been reported to the best of our knowledge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...