Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 74(3): 421-435.e10, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30926243

RESUMO

Deubiquitinases have emerged as promising drug targets for cancer therapy. The two DUBs USP25 and USP28 share high similarity but vary in their cellular functions. USP28 is known for its tumor-promoting role, whereas USP25 is a regulator of the innate immune system and, recently, a role in tumorigenesis was proposed. We solved the structures of the catalytic domains of both proteins and established substantial differences in their activities. While USP28 is a constitutively active dimer, USP25 presents an auto-inhibited tetramer. Our data indicate that the activation of USP25 is not achieved through substrate or ubiquitin binding. USP25 cancer-associated mutations lead to activation in vitro and in vivo, thereby providing a functional link between auto-inhibition and the cancer-promoting role of the enzyme. Our work led to the identification of significant differences between USP25 and USP28 and provided the molecular basis for the development of new and highly specific anti-cancer drugs.


Assuntos
Carcinogênese/genética , Neoplasias/genética , Ubiquitina Tiolesterase/genética , Sequência de Aminoácidos/genética , Domínio Catalítico/genética , Enzimas Desubiquitinantes/química , Enzimas Desubiquitinantes/genética , Humanos , Mutação/genética , Neoplasias/tratamento farmacológico , Ligação Proteica/genética , Conformação Proteica , Multimerização Proteica/genética , Ubiquitina/genética , Ubiquitina Tiolesterase/química
2.
J Bacteriol ; 201(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30617240

RESUMO

Extracytoplasmic function σ factors that are stress inducible are often sequestered in an inactive complex with a membrane-associated anti-σ factor. Mycobacterium tuberculosis membrane-associated anti-σ factors have a small, stable RNA gene A (ssrA)-like degron for targeted proteolysis. Interaction between the unfoldase, ClpX, and a substrate with an accessible degron initiates energy-dependent proteolysis. Four anti-σ factors with a mutation in the degron provided a set of natural substrates to evaluate the influence of the degron on degradation strength in ClpX-substrate processivity. We note that a point mutation in the degron (X-Ala-Ala) leads to an order-of-magnitude difference in the dwell time of the substrate on ClpX. Differences in ClpX/anti-σ interactions were correlated with changes in unfoldase activities. Green fluorescent protein (GFP) chimeras or polypeptides with a length identical to that of the anti-σ factor degron also demonstrate degron-dependent variation in ClpX activities. We show that degron-dependent ClpX activity leads to differences in anti-σ degradation, thereby regulating the release of free σ from the σ/anti-σ complex. M. tuberculosis ClpX activity thus influences changes in gene expression by modulating the cellular abundance of ECF σ factors.IMPORTANCE The ability of Mycobacterium tuberculosis to quickly adapt to changing environmental stimuli occurs by maintaining protein homeostasis. Extracytoplasmic function (ECF) σ factors play a significant role in coordinating the transcription profile to changes in environmental conditions. Release of the σ factor from the anti-σ is governed by the ClpXP2P1 assembly. M. tuberculosis ECF anti-σ factors have an ssrA-like degron for targeted degradation. A point mutation in the degron leads to differences in ClpX-mediated proteolysis and affects the cellular abundance of ECF σ factors. ClpX activity thus synchronizes changes in gene expression with environmental stimuli affecting M. tuberculosis physiology.


Assuntos
Endopeptidase Clp/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/metabolismo , Proteínas Repressoras/metabolismo , Fator sigma/metabolismo , Análise Mutacional de DNA , Mutação Puntual , Proteólise , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA