Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cancers (Basel) ; 15(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36765664

RESUMO

B-cell acute lymphoblastic leukemia (ALL) is derived from an accumulation of malignant, immature B cells in the bone marrow and blood. Relapse due, in part, to the emergence of tumor cells that are resistant to front line standard chemotherapy is associated with poor patient outcomes. This challenge highlights the need for new treatment strategies to eliminate residual chemoresistant tumor cells. Based on the use of pitavastatin in acute myeloid leukemia (AML), we evaluated its efficacy in an REH ALL cell line derived to be resistant to vincristine. We found that pitavastatin inhibited the proliferation of both parental and vincristine-resistant REH tumor cells at an IC50 of 449 nM and 217 nM, respectively. Mitochondrial bioenergetic assays demonstrated that neither vincristine resistance nor pitavastatin treatment affected cellular oxidative phosphorylation, beta-oxidation, or glycolytic metabolism in ALL cells. In a co-culture model of ALL cells with bone marrow stromal cells, pitavastatin significantly decreased cell viability more robustly in the vincristine-resistant ALL cells compared with their parental controls. Subsequently, NSG mice were used to develop an in vivo model of B-cell ALL using both parental and vincristine-resistant ALL cells. Pitavastatin (10 mg/kg i.p.) significantly reduced the number of human CD45+ REH ALL cells in the bone marrow of mice after 4 weeks of treatment. Mechanistic studies showed that pitavastatin treatment in the vincristine-resistant cells led to apoptosis, with increased levels of cleaved PARP and protein-signaling changes for AMP-activated protein kinase/FoxO3a/Puma. Our data suggest the possible repurposing of pitavastatin as a chemotherapeutic agent in a model of vincristine-resistant B-cell ALL.

2.
Sci Rep ; 12(1): 16917, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209316

RESUMO

Characterizing complex fluvial-deltaic deposits is a challenging task for finding hydrocarbon discoveries. We described a methodology for predicting the hydrocarbon zones from complex well-log and prestack seismic data. In this current study, data analysis involves an integrated framework based on Simultaneous prestack seismic inversion (SPSI), target correlation coefficient analysis (TCCA), Poisson impedance inversion, and non-parametric statistical analysis, and Bayesian classification. First, seismic elastic attributes from prestack seismic data were estimated. They can provide the spatial distribution of petrophysical properties of seismic data. Then target correlation coefficient analysis (TCCA) was estimated roration factor "c" from well-log data. Using the seismic elastic attributes and rotation factor "c", Poisson impedance inversion was performed to predict the Poisson impedance volume. Finally, Bayesian classification integrated the Poisson impedance volume with non-parametric probabilistic density functions (PDFs) to estimate the spatial distribution of lithofacies. Despite complex characteristics in the elastic properties, the current study successfully delineated the complex fluvial-details deposits. These results were verified with conventional findings through numerical analysis.

3.
Cancers (Basel) ; 14(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35681662

RESUMO

The lack of complete therapeutic success in the treatment of B-cell acute lymphoblastic leukemia (ALL) has been attributed, in part, to a subset of cells within the bone marrow microenvironment that are drug resistant. Recently, the cholesterol synthesis inhibitor, pitavastatin (PIT), was shown to be active in acute myeloid leukemia, prompting us to evaluate it in our in vitro co-culture model, which supports a chemo-resistant ALL population. We used phospho-protein profiling to evaluate the use of lipid metabolic active compounds in these chemo-resistant cells, due to the up-regulation of multiple active survival signals. In a co-culture with stromal cells, a shift towards anabolic processes occurred, which was further confirmed by assays showing increased lipid content. The treatment of REH leukemia cells with pitavastatin in the co-culture model resulted in significantly higher leukemic cell death than exposure to the standard-of-care chemotherapeutic agent, cytarabine (Ara-C). Our data demonstrates the use of pitavastatin as a possible alternative treatment strategy to improve patient outcomes in chemo-resistant, relapsed ALL.

4.
Sci Rep ; 11(1): 15840, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349149

RESUMO

B-cell acute lymphoblastic leukemia (ALL) is characterized by accumulation of immature hematopoietic cells in the bone marrow, a well-established sanctuary site for leukemic cell survival during treatment. While standard of care treatment results in remission in most patients, a small population of patients will relapse, due to the presence of minimal residual disease (MRD) consisting of dormant, chemotherapy-resistant tumor cells. To interrogate this clinically relevant population of treatment refractory cells, we developed an in vitro cell model in which human ALL cells are grown in co-culture with human derived bone marrow stromal cells or osteoblasts. Within this co-culture, tumor cells are found in suspension, lightly attached to the top of the adherent cells, or buried under the adherent cells in a population that is phase dim (PD) by light microscopy. PD cells are dormant and chemotherapy-resistant, consistent with the population of cells that underlies MRD. In the current study, we characterized the transcriptional signature of PD cells by RNA-Seq, and these data were compared to a published expression data set derived from human MRD B-cell ALL patients. Our comparative analyses revealed that the PD cell population is markedly similar to the MRD expression patterns from the primary cells isolated from patients. We further identified genes and key signaling pathways that are common between the PD tumor cells from co-culture and patient derived MRD cells as potential therapeutic targets for future studies.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Mesenquimais/patologia , Neoplasia Residual/patologia , Osteoblastos/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Transcriptoma , Técnicas de Cocultura , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Neoplasia Residual/tratamento farmacológico , Neoplasia Residual/genética , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , RNA-Seq
5.
Indian J Pathol Microbiol ; 64(3): 504-508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34341261

RESUMO

BACKGROUND: Adenine phosphoribosyltransferase (APRT) enzyme deficiency is a rare autosomal recessive disorder of purine metabolism affecting mainly the kidneys. It can present at any age with varying degrees of acute and chronic renal damage. Though xanthine dehydrogenase inhibitors offer effective control over the disease process, delay in diagnosis and treatment often lead to compromised function of native and even graft kidneys. METHODS: We have done a retrospective search of records of renal biopsies reported at our center during the 5-year period from 2014 to 2018 to identify biopsies with 2,8-dihydroxyadenine crystal deposits. The demographic, clinical, and histopathological findings in these cases were studied and reviewed in the light of available literature. RESULTS: Of 9059 renal biopsies received during the study period, 3 cases had the rare 2,8- dihydroxyadenine (DHA) crystals. All of them were diagnosed for the first time on allograft biopsies. CONCLUSION: A high index of clinical suspicion together with the characteristic microscopic appearance of crystals on renal biopsy and urine microscopy can clinch the diagnosis of this rare disease. Hence, improving awareness about this entity among clinicians and pathologists is extremely important.


Assuntos
Adenina/análogos & derivados , Nefropatias/patologia , Nefropatias/urina , Rim/patologia , Adenina/química , Adenina/urina , Adulto , Aloenxertos , Biópsia , Cristalização , Feminino , Humanos , Transplante de Rim/efeitos adversos , Masculino , Pessoa de Meia-Idade , Recidiva , Estudos Retrospectivos
6.
Pharm Res ; 37(3): 43, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31989336

RESUMO

PURPOSE: Pyrvinium pamoate (PP) is an anthelmintic drug that has been found to have anti-cancer activity in several cancer types. In the present study, we evaluated PP for potential anti-leukemic activity in B cell acute lymphoblastic leukemia (ALL) cell lines, in an effort to evaluate the repurposing potential of this drug in leukemia. METHODS: ALL cells were treated with PP at various concentrations to determine its effect on cell proliferation. Metabolic function was tested by evaluating Extracellular Acidification Rate (ECAR) and Oxygen Consumption Rate (OCR). Lastly, 3D spheroids were grown, and PP was reformulated into nanoparticles to evaluate distribution effectiveness. RESULTS: PP was found to inhibit ALL proliferation, with varied selectivity to different ALL cell subtypes. We also found that PP's cell death activity was specific for leukemic cells, as primary normal immune cells were resistant to PP-mediated cell death. Metabolic studies indicated that PP, in part, inhibits mitochondrial oxidative phosphorylation. To increase the targeting of PP to a hypoxic bone tumor microenvironment (BTME) niche, we successfully encapsulated PP in a nanoparticle drug delivery system and demonstrated that it retained its anti-leukemic activity in a hemosphere assay. CONCLUSION: We have demonstrated that PP is a novel therapeutic lead compound that counteracts the respiratory reprogramming found in refractory ALL cells and can be effectively formulated into a nanoparticle delivery system to target the BTME.


Assuntos
Antineoplásicos/farmacologia , Osso e Ossos/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Compostos de Pirvínio/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Humanos , Nanocápsulas/química , Fosforilação , Transdução de Sinais
7.
J Pharmacol Exp Ther ; 370(1): 25-34, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010844

RESUMO

Disease relapse in B-cell acute lymphoblastic leukemia (ALL), either due to development of acquired resistance after therapy or because of de novo resistance, remains a therapeutic challenge. In the present study, we have developed a cytarabine (Ara-C)-resistant REH cell line (REH/Ara-C) as a chemoresistance model. REH/Ara-C 1) was not crossresistant to vincristine or methotrexate; 2) showed a similar proliferation rate and cell surface marker expression as parental REH; 3) demonstrated decreased chemotaxis toward bone marrow stromal cells; and 4) expressed higher transcript levels of cytidine deaminase (CDA) and mitoNEET (CISD1) than the parental REH cell line. Based on these findings, we tested NL-1, a mitoNEET inhibitor, which induced a concentration-dependent decrease in cell viability with a comparable IC50 value in REH and REH/Ara-C. Furthermore, NL-1 decreased cell viability in six different ALL cell lines and showed inhibitory activity in a hemosphere assay. NL-1 also impaired the migratory ability of leukemic cells, irrespective of the chemoattractant used, in a chemotaxis assay. More importantly, NL-1 showed specific activity in inducing death in a drug-resistant population of leukemic cells within a coculture model that mimicked the acquired resistance and de novo resistance observed in the bone marrow of relapsed patients. Subsequent studies indicated that NL-1 mediates autophagy, and inhibition of autophagy partially decreased NL-1-induced tumor cell death. Finally, NL-1 showed antileukemic activity in an in vivo mouse ALL model. Taken together, our study demonstrates that mitoNEET has potential as a novel antileukemic drug target in treatment refractory or relapsed ALL.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Quimiotaxia/efeitos dos fármacos , Citarabina/farmacologia , Descoberta de Drogas , Humanos , Ligantes , Proteínas Mitocondriais/antagonistas & inibidores , Recidiva
8.
Commun Chem ; 22019.
Artigo em Inglês | MEDLINE | ID: mdl-32382661

RESUMO

MitoNEET (gene cisd1) is a mitochondrial outer membrane [2Fe-2S] protein and is a potential drug target in several metabolic diseases. Previous studies have demonstrated that mitoNEET functions as a redox-active and pH-sensing protein that regulates mitochondrial metabolism, although the structural basis of the potential drug binding site(s) remains elusive. Here we report the crystal structure of the soluble domain of human mitoNEET with a sulfonamide ligand, furosemide. Exploration of the high-resolution crystal structure is used to design mitoNEET binding molecules in a pilot study of molecular probes for use in future development of mitochondrial targeted therapies for a wide variety of metabolic diseases, including obesity, diabetes and neurodegenerative diseases such as Alzheimer's and Parkinson's disease.

9.
J Cancer Res Ther ; 14(6): 1251-1255, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30488839

RESUMO

INTRODUCTION: Keloids are characterized by collection of atypical fibroblasts with excessive deposition of extracellular matrix components. Keloids are prone to high recurrence (50%-80%) with unimodality treatment. Radiation is a promising approach among the adjuvant modalities in vogue though consensus is lacking on dose-fractionation schedule. AIM: The present study aimed to analyze the efficacy of single-fraction high-dose adjuvant radiotherapy to prevent keloid recurrence. MATERIALS AND METHODS: Details of patients treated for keloids using external beam radiation therapy from January 2011 to December 2016 were retrieved from electronic medical records and radiation therapy charts and analyzed. RESULTS: Thirty-seven keloid lesions in thirty patients were analyzed. Keloids received radiation within 24-72 h postsurgery using 6 MeV electron beam. 45.9% of keloids were in the chest wall. Dose ranged between 5 Gy and 12 Gy in 1-3 fractions. Eight Gy was used in 78.4%. The single fraction was preferred in 91.9%. Good cosmesis was achieved in all except three who had wound dehiscence. Median follow-up was 32.67 months. 16.2% had recurrence. Median time to recur was 13.6 months, and median recurrence-free interval 21.23 months. Among those who received 8 Gy single fraction, 73.4% remained recurrence-free at 5 years. CONCLUSION: Albeit a retrospective analysis, ours is the only study in literature offering 8 Gy single dose, using electrons, as a postoperative adjuvant treatment to prevent recurrence in keloids. Our recurrence rates were similar to that quoted in published series. This hence can be validated in further studies as it is cosmetically acceptable, safe, painless, and cost-effective with good patient compliance.


Assuntos
Queloide/radioterapia , Radioterapia Adjuvante/mortalidade , Adulto , Idoso , Fracionamento da Dose de Radiação , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva , Estudos Retrospectivos , Taxa de Sobrevida , Resultado do Tratamento , Adulto Jovem
10.
Leuk Res ; 72: 59-66, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30103201

RESUMO

Bone marrow microenvironment mediated downregulation of BCL6 is critical for maintaining cell quiescence and modulating therapeutic response in B-cell acute lymphoblastic leukemia (ALL). In the present study, we have performed a high throughput cell death assay using BCL6 knockdown REH ALL cell line to screen a library of FDA-approved oncology drugs. In the process, we have identified a microtubule inhibitor, cabazitaxel (CAB), and a RNA synthesis inhibitor, plicamycin (PLI) as potential anti-leukemic agents. CAB and PLI inhibited cell proliferation in not only the BCL6 knockdown REH cell line, but also six other ALL cell lines. Furthermore, combination of CAB and PLI had a synergistic effect in inhibiting proliferation in a cytarabine-resistant (REH/Ara-C) ALL cell line. Use of nanoparticles for delivery of CAB and PLI demonstrated that the combination was very effective when tested in a co-culture model that mimics the in vivo bone marrow microenvironment that typically supports ALL cell survival and migration into protective niches. Furthermore, exposure to PLI inhibited SOX2 transcription and exposure to CAB inhibited not only Mcl-1 expression but also chemotaxis in ALL cells. Taken together, our study demonstrates the utility of concomitantly targeting different critical regulatory pathways to induce cell death in drug resistant ALL cells.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Nanopartículas/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Plicamicina/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Taxoides/farmacologia
12.
Bioorg Med Chem Lett ; 28(10): 1937-1942, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29650292

RESUMO

Over the past decade, the therapeutic strategies employed to treat B-precursor acute lymphoblastic leukemia (ALL) have been progressively successful in treating the disease. Unfortunately, the treatment associated dyslipidemia, either acute or chronic, is very prevalent and a cause for decreased quality of life in the surviving patients. To overcome this hurdle, we tested a series of cylopropanecarboxamides, a family demonstrated to target lipid metabolism, for their anti-leukemic activity in ALL. Several of the compounds tested showed anti-proliferative activity, with one, compound 22, inhibiting both Philadelphia chromosome negative REH and Philadelphia chromosome positive SupB15 ALL cell division. The novel advantage of these compounds is the potential synergy with standard chemotherapeutic agents, while concomitantly blunting the emergence of dyslipidemia. Thus, the cylopropanecarboxamides represent a novel class of compounds that can be potentially used in combination with the present standard-of-care to limit treatment associated dyslipidemia in ALL patients.


Assuntos
Antineoplásicos/química , Lipase Lipoproteica/metabolismo , Amidas/química , Amidas/metabolismo , Amidas/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Dislipidemias/complicações , Dislipidemias/metabolismo , Dislipidemias/patologia , Humanos , Lipase Lipoproteica/antagonistas & inibidores , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Simulação de Acoplamento Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras/complicações , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Ligação Proteica , Estrutura Terciária de Proteína , Albumina Sérica/química , Albumina Sérica/metabolismo
13.
Anticancer Res ; 37(4): 1655-1663, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28373426

RESUMO

BACKGROUND/AIM: One of the major hurdles in the treatment of breast cancers is the inability of anti-cancer drugs to eliminate the breast cancer stem cells (BCSCs) population, which leads to disease relapse. The dearth in anti-cancer drugs that target BCSCs can be attributed to the absence of in vitro screening models that can not only recapitulate the tumor microenvironment consisting of BCSCs but also preserve the 3-dimensional (3D) architecture of in vivo tumors. MATERIALS AND METHODS: In our present study, we have developed a 3D cell culture system that shows: (i) enrichment of BCSCs, (ii) increased drug resistance, and (iii) generation of hypoxic conditions similar to tumors. RESULTS: Using this model, we were able to screen a FDA-approved diversity set and identify as well as validate actinomycin D as a potential anti-breast cancer agent. Interestingly, we show that actinomycin D specifically targets and down-regulates the expression of the stem cell transcription factor, Sox-2. Additionally, down-regulation of Sox-2 leads to depletion of the stem-cell population resulting in the inability of breast cancer cells to initiate tumor progression. CONCLUSION: This study demonstrates the utility of an in vivo-like 3D cell culture system for the identification and validation of anti-cancer agents that will have a better probability of success in the clinic.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Dactinomicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição SOXB1/antagonistas & inibidores , Antibióticos Antineoplásicos/farmacologia , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Células Tumorais Cultivadas
14.
Cell Chem Biol ; 24(4): 433-442.e6, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28330604

RESUMO

Selenomabs are engineered monoclonal antibodies with one or more translationally incorporated selenocysteine residues. The unique reactivity of the selenol group of selenocysteine permits site-specific conjugation of drugs. Compared with other natural and unnatural amino acid and carbohydrate residues that have been used for the generation of site-specific antibody-drug conjugates, selenocysteine is particularly reactive, permitting fast, single-step, and efficient reactions under near physiological conditions. Using a tailored conjugation chemistry, we generated highly stable selenomab-drug conjugates and demonstrated their potency and selectivity in vitro and in vivo. These site-specific antibody-drug conjugates built on a selenocysteine interface revealed broad therapeutic utility in liquid and solid malignancy models.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/metabolismo , Preparações Farmacêuticas/química , Animais , Anticorpos Monoclonais/metabolismo , Antineoplásicos/química , Antineoplásicos/toxicidade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fluoresceína/química , Humanos , Imunoconjugados/sangue , Imunoconjugados/química , Subunidade gama Comum de Receptores de Interleucina/imunologia , Subunidade gama Comum de Receptores de Interleucina/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Estabilidade Proteica , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Selenocisteína/química , Selenocisteína/imunologia , Selenocisteína/metabolismo , Sindecana-1/imunologia , Sindecana-1/metabolismo , Transplante Heterólogo
15.
Mol Cancer Ther ; 12(11): 2446-58, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24048737

RESUMO

Our laboratory recently reported that treatment with the d-amino acid containing peptide HYD1 induces necrotic cell death in multiple myeloma cell lines. Because of the intriguing biological activity and promising in vivo activity of HYD1, we pursued strategies for increasing the therapeutic efficacy of the linear peptide. These efforts led to a cyclized peptidomimetic, MTI-101, with increased in vitro activity and robust in vivo activity as a single agent using two myeloma models that consider the bone marrow microenvironment. MTI-101 treatment similar to HYD1 induced reactive oxygen species, depleted ATP levels, and failed to activate caspase-3. Moreover, MTI-101 is cross-resistant in H929 cells selected for acquired resistance to HYD1. Here, we pursued an unbiased chemical biology approach using biotinylated peptide affinity purification and liquid chromatography/tandem mass spectrometry analysis to identify binding partners of MTI-101. Using this approach, CD44 was identified as a predominant binding partner. Reducing the expression of CD44 was sufficient to induce cell death in multiple myeloma cell lines, indicating that multiple myeloma cells require CD44 expression for survival. Ectopic expression of CD44s correlated with increased binding of the FAM-conjugated peptide. However, ectopic expression of CD44s was not sufficient to increase the sensitivity to MTI-101-induced cell death. Mechanistically, we show that MTI-101-induced cell death occurs via a Rip1-, Rip3-, or Drp1-dependent and -independent pathway. Finally, we show that MTI-101 has robust activity as a single agent in the SCID-Hu bone implant and 5TGM1 in vivo model of multiple myeloma.


Assuntos
Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Receptores de Hialuronatos/metabolismo , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Oligopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Animais , Antineoplásicos/uso terapêutico , Caspase 3/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida , Ciclização , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Necrose/induzido quimicamente , Neoplasias Experimentais , Oligopeptídeos/química , Oligopeptídeos/uso terapêutico , Peptídeos Cíclicos/metabolismo , Peptídeos Cíclicos/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Espectrometria de Massas em Tandem
16.
Clin Kidney J ; 6(3): 305-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26064490

RESUMO

Nail-patella syndrome (NPS) is an autosomal-dominant pleiotropic disorder characterized by dyplasia of finger nails, skeletal anomalies and frequently renal disease. In the reported case, genetic analysis revealed a new missense mutation in the homeodomain of LMX1B, presumed to abolish DNA binding (c.725T>C, p.Val242Ala). A missense mutation at codon 725 was identified, where thymine was replaced by cytosine which led to the replacement of valine by alanine at position 242. It was not detected in both parents. A 2005 study by Bongers et al. described a significant association between the presence of clinically relevant renal involvement in an NPS patient and a positive family history of nephropathy, which was lacking in our case.

17.
Adv Pharmacol ; 65: 143-89, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22959026

RESUMO

Multiple myeloma (MM) is an incurable hematological cancer involving proliferation of abnormal plasma cells that infiltrate the bone marrow (BM) and secrete monoclonal antibodies. The disease is clinically characterized by bone lesions, anemia, hypercalcemia, and renal failure. MM is presently treated with conventional therapies like melphalan, doxorubicin, and prednisone; or novel therapies like thalidomide, lenalidomide, and bortezomib; or with procedures like autologous stem cell transplantation. Unfortunately, these therapies fail to eliminate the minimal residual disease that remains persistent within the confines of the BM of MM patients. Mounting evidence indicates that components of the BM-including extracellular matrix, cytokines, chemokines, and growth factors-provide a sanctuary for subpopulations of MM. This co-dependent development of the disease in the context of the BM not only ensures the survival and growth of the plasma cells but contributes to de novo drug resistance. In addition, by fostering homing, angiogenesis, and osteolysis, this crosstalk plays a critical role in the progression of the disease. Not surprisingly then, over the past decade, several strategies have been developed to disrupt this communication between the plasma cells and the BM components including antibodies, peptides, and inhibitors of signaling pathways. Ultimately, the goal is to use these therapies in combination with the existing antimyeloma agents in order to further reduce or abolish minimal residual disease and improve patient outcomes.


Assuntos
Terapia de Alvo Molecular , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Adesão Celular/efeitos dos fármacos , Progressão da Doença , Humanos , Transdução de Sinais/efeitos dos fármacos
18.
Front Oncol ; 2: 30, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22649784

RESUMO

Chronic myeloid leukemia (CML) is initially driven by the bcr-abl fusion oncoprotein. The identification of bcr-abl led to the discovery and rapid translation into the clinic of bcr-abl kinase inhibitors. Although, bcr-abl inhibitors are efficacious, experimental evidence indicates that targeting bcr-abl is not sufficient for elimination of minimal residual disease found within the bone marrow (BM). Experimental evidence indicates that the failure to eliminate the leukemic stem cell contributes to persistent minimal residual disease. Thus curative strategies will likely need to focus on strategies where bcr-abl inhibitors are given in combination with agents that specifically target the leukemic stem cell or the leukemic stem cell niche. One potential target to be exploited is the Janus kinase (JAK)/signal transducers and activators of transcription 3 (STAT3) pathway. Recently using STAT3 conditional knock-out mice it was shown that STAT3 is critical for initiating the disease. Interestingly, in the absence of treatment, STAT3 was not shown to be required for maintenance of the disease, suggesting that STAT3 is required only in the tumor initiating stem cell population (Hoelbl et al., 2010). In the context of the BM microenvironment, STAT3 is activated in a bcr-abl independent manner by the cytokine milieu. Activation of JAK/STAT3 was shown to contribute to cell survival even in the event of complete inhibition of bcr-abl activity within the BM compartment. Taken together, these studies suggest that JAK/STAT3 is an attractive therapeutic target for developing strategies for targeting the JAK-STAT3 pathway in combination with bcr-abl kinase inhibitors and may represent a viable strategy for eliminating or reducing minimal residual disease located in the BM in CML.

19.
Leuk Res ; 36(6): 756-63, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22209738

RESUMO

In this study, we show that conditioned media (CM) generated from bone marrow (BM)-derived mesenchymal stromal cells lead to BCR-ABL independent STAT3 activation. Activation of STAT3 is important not only for survival of CML cells but also for its protection against Nilotinib (NI), within the BM microenvironment. Reducing the expression of both JAK2 and TYK2 or utilizing a pan-JAK inhibitor blocked CM-mediated STAT3 activation and sensitized CML cells to NI-mediated cell death. Finally, we demonstrate that in patient-derived primitive leukemic cells, co-cultured with BM stromal cells, inhibition of BCR-ABL and JAK activity was a successful strategy to potentiate their elimination.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Células da Medula Óssea/efeitos dos fármacos , Janus Quinases/antagonistas & inibidores , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Células da Medula Óssea/patologia , Morte Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Camundongos , Camundongos SCID , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Cancer Ther ; 10(12): 2257-66, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21980133

RESUMO

We recently reported that the ß1 integrin antagonist, referred to as HYD1, induces necrotic cell death in myeloma cell lines as a single agent using in vitro and in vivo models. In this article, we sought to delineate the determinants of sensitivity and resistance toward HYD1-induced cell death. To this end, we developed an HYD1 isogenic resistant myeloma cell line by chronically exposing H929 myeloma cells to increasing concentrations of HYD1. Our data indicate that the acquisition of resistance toward HYD1 correlates with reduced levels of the cleaved α4 integrin subunit. Consistent with reduced VLA-4 (α4ß1) expression, the resistant variant showed ablated functional binding to fibronectin, VCAM-1, and the bone marrow stroma cell line HS-5. The reduction in binding of the resistant cell line to HS-5 cells translated to a compromised cell adhesion-mediated drug resistant phenotype as shown by increased sensitivity to melphalan- and bortezomib-induced cell death in the bone marrow stroma coculture model of drug resistance. Importantly, we show that HYD1 is more potent in relapsed myeloma specimens than newly diagnosed patients, a finding that correlated with α4 integrin expression. Collectively, these data indicate that this novel d-amino acid peptide may represent a good candidate for pursuing clinical trials in relapsed myeloma and in particular patients with high levels of α4 integrin. Moreover, our data provide further rationale for continued preclinical development of HYD1 and analogues of HYD1 for the treatment of multiple myeloma and potentially other tumors that home and/or metastasize to the bone.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Integrina alfa4/genética , Mieloma Múltiplo/patologia , Oligopeptídeos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Adesão Celular/efeitos dos fármacos , Adesão Celular/genética , Linhagem Celular Tumoral , Regulação para Baixo/genética , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Integrina alfa4/metabolismo , Cadeias beta de Integrinas/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Oligopeptídeos/farmacologia , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...