Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 193: 106437, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38367882

RESUMO

TDP-43 pathology is found in several neurodegenerative disorders, collectively referred to as "TDP-43 proteinopathies". Aggregates of TDP-43 are present in the brains and spinal cords of >97% of amyotrophic lateral sclerosis (ALS), and in brains of ∼50% of frontotemporal dementia (FTD) patients. While mutations in the TDP-43 gene (TARDBP) are usually associated with ALS, many clinical reports have linked these mutations to cognitive impairments and/or FTD, but also to other neurodegenerative disorders including Parkinsonism (PD) or progressive supranuclear palsy (PSP). TDP-43 is a ubiquitously expressed, highly conserved RNA-binding protein that is involved in many cellular processes, mainly RNA metabolism. To investigate systemic pathological mechanisms in TDP-43 proteinopathies, aiming to capture the pleiotropic effects of TDP-43 mutations, we have further characterised a mouse model carrying a point mutation (M323K) within the endogenous Tardbp gene. Homozygous mutant mice developed cognitive and behavioural deficits as early as 3 months of age. This was coupled with significant brain structural abnormalities, mainly in the cortex, hippocampus, and white matter fibres, together with progressive cortical interneuron degeneration and neuroinflammation. At the motor level, progressive phenotypes appeared around 6 months of age. Thus, cognitive phenotypes appeared to be of a developmental origin with a mild associated progressive neurodegeneration, while the motor and neuromuscular phenotypes seemed neurodegenerative, underlined by a progressive loss of upper and lower motor neurons as well as distal denervation. This is accompanied by progressive elevated TDP-43 protein and mRNA levels in cortex and spinal cord of homozygous mutant mice from 3 months of age, together with increased cytoplasmic TDP-43 mislocalisation in cortex, hippocampus, hypothalamus, and spinal cord at 12 months of age. In conclusion, we find that Tardbp M323K homozygous mutant mice model many aspects of human TDP-43 proteinopathies, evidencing a dual role for TDP-43 in brain morphogenesis as well as in the maintenance of the motor system, making them an ideal in vivo model system to study the complex biology of TDP-43.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Proteinopatias TDP-43 , Animais , Pré-Escolar , Humanos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Cognição , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Proteinopatias TDP-43/genética , Proteinopatias TDP-43/patologia
2.
Dis Model Mech ; 16(10)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37772684

RESUMO

Variants in the ubiquitously expressed DNA/RNA-binding protein FUS cause aggressive juvenile forms of amyotrophic lateral sclerosis (ALS). Most FUS mutation studies have focused on motor neuron degeneration; little is known about wider systemic or developmental effects. We studied pleiotropic phenotypes in a physiological knock-in mouse model carrying the pathogenic FUSDelta14 mutation in homozygosity. RNA sequencing of multiple organs aimed to identify pathways altered by the mutant protein in the systemic transcriptome, including metabolic tissues, given the link between ALS-frontotemporal dementia and altered metabolism. Few genes were commonly altered across all tissues, and most genes and pathways affected were generally tissue specific. Phenotypic assessment of mice revealed systemic metabolic alterations related to the pathway changes identified. Magnetic resonance imaging brain scans and histological characterisation revealed that homozygous FUSDelta14 brains were smaller than heterozygous and wild-type brains and displayed significant morphological alterations, including a thinner cortex, reduced neuronal number and increased gliosis, which correlated with early cognitive impairment and fatal seizures. These findings show that the disease aetiology of FUS variants can include both neurodevelopmental and systemic alterations.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Esclerose Lateral Amiotrófica/patologia , Sinais de Localização Nuclear/genética , Sinais de Localização Nuclear/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo , Mutação/genética , Neurônios/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38373116

RESUMO

Fiber composition is an important factor influencing force generation and endurance of different skeletal muscles. The analysis of the heterogeneous composition of muscles has gained importance in the field of sports biomechanics and biomedicine. In this work, an attempt is made to analyze the fiber composition of Rectus femoris (type II dominant) and Soleus (type I dominant) muscles using surface electromyography. Isometric signals are acquired from the muscles of 15 participants using a well-defined protocol and are further processed using reduced interference Rihaczek distribution. Instantaneous median frequency (IMDF) is extracted from the non-fatigue (NF) and fatigue (F) segments of the signals and is analyzed. From the distributions, it is found that the spectral power increases in the lower frequencies of the signal recorded from the rectus femoris and in the higher frequencies of signals recorded from the soleus during fatigue. The soleus is showing higher IMDF values than the rectus femoris in both segments. A reduction of 14% and an increase of 10% is observed in the IMDF during fatigue for rectus femoris and soleus, respectively. Thus, the extracted feature is found to be sensitive and statistically significant (p<0.05) to differentiate fiber types as well as the NF and F states of the two muscles.Clinical Relevance- This study may be extended to non-invasively analyze the fiber type shifts in muscles due to athletic training and pathological conditions.


Assuntos
Fadiga Muscular , Músculo Esquelético , Humanos , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Extremidade Inferior , Fadiga
5.
Sci Total Environ ; 825: 153892, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35181360

RESUMO

Over the past few years, we are witnessing the advent of a revolutionary bioengineering technology in biochar production and its application in waste treatment and an important component in power generation devices. Biochar is a solid product, highly rich in carbon, whose adsorption properties are ideal for wastewater decontamination. Due to its high specific surface area to volume ratio, it can be utilized for many environmental applications. It has diverse applications in various fields. This review focuses on its various applications in wastewater treatment to remove various pollutants such as heavy metals, dyes, organic compounds, and pesticides. This review also highlights several energy-based applications in batteries, supercapacitors, and microbial fuel cells. It described information about the different feedstock materials to produce LB-derived biochar, the various conditions for the production process, i.e., pyrolysis and the modification methods of biochar for improving properties required for wastewater treatment. The present review helps the readers understand the importance of biochar in wastewater treatment and its application in power generation in terms of batteries, supercapacitors, microbial fuel cells, applications in fuel production, pollutant and dye removal, particularly the latest development on using LB-derived biochar. This review also highlights the economic and environmental sustainability along with the commercialization of biochar plants. It also describes various pyrolytic reactors utilized for biochar production.


Assuntos
Poluentes Ambientais , Metais Pesados , Purificação da Água , Adsorção , Biomassa , Carvão Vegetal , Corantes
6.
Commun Biol ; 4(1): 1025, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471224

RESUMO

Mutations in the RNA-binding protein (RBP) FUS have been genetically associated with the motoneuron disease amyotrophic lateral sclerosis (ALS). Using both human induced pluripotent stem cells and mouse models, we found that FUS-ALS causative mutations affect the activity of two relevant RBPs with important roles in neuronal RNA metabolism: HuD/ELAVL4 and FMRP. Mechanistically, mutant FUS leads to upregulation of HuD protein levels through competition with FMRP for HuD mRNA 3'UTR binding. In turn, increased HuD levels overly stabilize the transcript levels of its targets, NRN1 and GAP43. As a consequence, mutant FUS motoneurons show increased axon branching and growth upon injury, which could be rescued by dampening NRN1 levels. Since similar phenotypes have been previously described in SOD1 and TDP-43 mutant models, increased axonal growth and branching might represent broad early events in the pathogenesis of ALS.


Assuntos
Axônios/metabolismo , Proteína Semelhante a ELAV 4/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína FUS de Ligação a RNA/genética , Animais , Linhagem Celular , Proteína Semelhante a ELAV 4/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Humanos , Camundongos , Neurônios Motores/metabolismo , Mutação , Proteína FUS de Ligação a RNA/metabolismo
7.
iScience ; 24(12): 103463, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34988393

RESUMO

Amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) is a fatal neurodegenerative disorder, and continued innovation is needed for improved understanding and for developing therapeutics. We have created next-generation genomically humanized knockin mouse models, by replacing the mouse genomic region of Sod1, Tardbp (TDP-43), and Fus, with their human orthologs, preserving human protein biochemistry and splicing with exons and introns intact. We establish a new standard of large knockin allele quality control, demonstrating the utility of indirect capture for enrichment of a genomic region of interest followed by Oxford Nanopore sequencing. Extensive analysis shows that homozygous humanized animals only express human protein at endogenous levels. Characterization of humanized FUS animals showed that they are phenotypically normal throughout their lifespan. These humanized strains are vital for preclinical assessment of interventions and serve as templates for the addition of coding or non-coding human ALS/FTD mutations to dissect disease pathomechanisms, in a physiological context.

8.
Methods ; 191: 15-22, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32721467

RESUMO

Aberrant microsatellite repeat-expansions at specific loci within the human genome cause several distinct, heritable, and predominantly neurological, disorders. Creating models for these diseases poses a challenge, due to the instability of such repeats in bacterial vectors, especially with large repeat expansions. Designing constructs for more precise genome engineering projects, such as engineering knock-in mice, proves a greater challenge still, since these unstable repeats require numerous cloning steps in order to introduce homology arms or selection cassettes. Here, we report our efforts to clone a large hexanucleotide repeat in the C9orf72 gene, originating from within a BAC construct, derived from a C9orf72-ALS patient. We provide detailed methods for efficient repeat sizing and growth conditions in bacteria to facilitate repeat retention during growth and sub-culturing. We report that sub-cloning into a linear vector dramatically improves stability, but is dependent on the relative orientation of DNA replication through the repeat, consistent with previous studies. We envisage the findings presented here provide a relatively straightforward route to maintaining large-range microsatellite repeat-expansions, for efficient cloning into vectors.


Assuntos
Expansão das Repetições de DNA , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/genética , Clonagem Molecular , Marcação de Genes , Humanos , Camundongos
9.
BMC Mol Cell Biol ; 21(1): 16, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188398

RESUMO

Following publication of the original article [1], an error was reported in the tagging of Eugene H. Johnson and Remya R. Nair in the author group.

10.
BMC Mol Cell Biol ; 20(1): 55, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31783731

RESUMO

BACKGROUND: Brucella is a facultative intracellular pathogen responsible for zoonotic disease brucellosis. Little is known about the molecular basis of Brucella adherence to host cells. In the present study, the possible role of Bp26 protein as an adhesin was explored. The ability of Brucella protein Bp26 to bind to extracellular matrix (ECM) proteins was determined by enzyme-linked immunosorbent assay (ELISA) and biolayer interferometry (BLI). RESULTS: ELISA experiments showed that Bp26 bound in a dose-dependent manner to both immobilized type I collagen and vitronectin. Bp26 bound weakly to soluble fibronectin but did not bind to immobilized fibronectin. No binding to laminin was detected. Biolayer interferometry showed high binding affinity of Bp26 to immobilized type I collagen and no binding to fibronectin or laminin. Mapping of Bp26 antigenic epitopes by biotinylated overlapping peptides spanning the entire sequence of Bp26 using anti Bp26 mouse serum led to the identification of five linear epitopes. Collagen and vitronectin bound to peptides from several regions of Bp26, with many of the binding sites for the ligands overlapping. The strongest binding for anti-Bp26 mouse serum, collagen and vitronectin was to the peptides at the C-terminus of Bp26. Fibronectin did not bind to any of the peptides, although it bound to the whole Bp26 protein. CONCLUSIONS: Our results highlight the possible role of Bp26 protein in the adhesion process of Brucella to host cells through ECM components. This study revealed that Bp26 binds to both immobilized and soluble type I collagen and vitronectin. It also binds to soluble but not immobilized fibronectin. However, Bp26 does not bind to laminin. These are novel findings that offer insight into understanding the interplay between Brucella and host target cells, which may aid in future identification of a new target for diagnosis and/or vaccine development and prevention of brucellosis.


Assuntos
Proteínas da Matriz Extracelular , Proteínas de Membrana , Adesinas Bacterianas/imunologia , Adesinas Bacterianas/metabolismo , Colágeno , Ensaio de Imunoadsorção Enzimática/métodos , Mapeamento de Epitopos , Fibronectinas , Interações entre Hospedeiro e Microrganismos , Laminina , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Ligação Proteica
11.
Mamm Genome ; 30(7-8): 173-191, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31203387

RESUMO

Neurodegenerative disease encompasses a wide range of disorders afflicting the central and peripheral nervous systems and is a major unmet biomedical need of our time. There are very limited treatments, and no cures, for most of these diseases, including Alzheimer's Disease, Parkinson's Disease, Huntington Disease, and Motor Neuron Diseases. Mouse and other animal models provide hope by analysing them to understand pathogenic mechanisms, to identify drug targets, and to develop gene therapies and stem cell therapies. However, despite many decades of research, virtually no new treatments have reached the clinic. Increasingly, it is apparent that human heterogeneity within clinically defined neurodegenerative disorders, and between patients with the same genetic mutations, significantly impacts disease presentation and, potentially, therapeutic efficacy. Therefore, stratifying patients according to genetics, lifestyle, disease presentation, ethnicity, and other parameters may hold the key to bringing effective therapies from the bench to the clinic. Here, we discuss genetic and cellular humanised mouse models, and how they help in defining the genetic and environmental parameters associated with neurodegenerative disease, and so help in developing effective precision medicine strategies for future healthcare.


Assuntos
Modelos Animais de Doenças , Doenças Neurodegenerativas/terapia , Medicina de Precisão , Animais , Quimera , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Fenótipo
12.
Nat Commun ; 10(1): 1845, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015419

RESUMO

To better understand human health and disease, researchers create a wide variety of mouse models that carry human DNA. With recent advances in genome engineering, the targeted replacement of mouse genomic regions with orthologous human sequences has become increasingly viable, ranging from finely tuned humanisation of individual nucleotides and amino acids to the incorporation of many megabases of human DNA. Here, we examine emerging technologies for targeted genomic humanisation, we review the spectrum of existing genomically humanised mouse models and the insights such models have provided, and consider the lessons learned for designing such models in the future.


Assuntos
Edição de Genes/métodos , Genoma Humano/genética , Camundongos/genética , Modelos Animais , Animais , Cromossomos Humanos/genética , Edição de Genes/tendências , Técnicas de Transferência de Genes/tendências , Humanos , Camundongos Transgênicos , Projetos de Pesquisa
14.
Membranes (Basel) ; 8(3)2018 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-30200672

RESUMO

A predictive model correlating the parameters in the mass transfer-based model Spiegler⁻Kedem to the pure water permeability is presented in this research, which helps to select porous polyamide membranes for enhanced oil recovery (EOR) applications. Using the experimentally obtained values of flux and rejection, the reflection coefficient σ and solute permeability Ps have been estimated as the mass transfer-based model parameters for individual ions in seawater. The reflection coefficient and solute permeability determined were correlated with the pure water permeability of a membrane, which is related to the structural parameters of a membrane. The novelty of this research is the development of a model that consolidates the various complex mechanisms in the mass transfer of ions through the membrane to an empirical correlation for a given feed concentration and membrane type. These correlations were later used to predict ion rejections of any polyamide membrane with a known pure water permeability and flux with seawater as a feed that aids in the selection of suitable nanofiltration (NF) for smart water production.

15.
J Neurosci ; 38(45): 9781-9800, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30266742

RESUMO

There has been a growing interest toward mitochondrial fatty acid synthesis (mtFAS) since the recent discovery of a neurodegenerative human disorder termed MEPAN (mitochondrial enoyl reductase protein associated neurodegeneration), which is caused by mutations in the mitochondrial enoyl-CoA/ACP (acyl carrier protein) reductase (MECR) carrying out the last step of mtFAS. We show here that MECR protein is highly expressed in mouse Purkinje cells (PCs). To elucidate mtFAS function in neural tissue, here, we generated a mouse line with a PC-specific knock-out (KO) of Mecr, leading to inactivation of mtFAS confined to this cell type. Both sexes were studied. The mitochondria in KO PCs displayed abnormal morphology, loss of protein lipoylation, and reduced respiratory chain enzymatic activities by the time these mice were 6 months of age, followed by nearly complete loss of PCs by 9 months of age. These animals exhibited balancing difficulties ∼7 months of age and ataxic symptoms were evident from 8-9 months of age on. Our data show that impairment of mtFAS results in functional and ultrastructural changes in mitochondria followed by death of PCs, mimicking aspects of the clinical phenotype. This KO mouse represents a new model for impaired mitochondrial lipid metabolism and cerebellar ataxia with a distinct and well trackable cellular phenotype. This mouse model will allow the future investigation of the feasibility of metabolite supplementation approaches toward the prevention of neurodegeneration due to dysfunctional mtFAS.SIGNIFICANCE STATEMENT We have recently reported a novel neurodegenerative disorder in humans termed MEPAN (mitochondrial enoyl reductase protein associated neurodegeneration) (Heimer et al., 2016). The cause of neuron degeneration in MEPAN patients is the dysfunction of the highly conserved mitochondrial fatty acid synthesis (mtFAS) pathway due to mutations in MECR, encoding mitochondrial 2-enoyl-CoA/ACP reductase. The report presented here describes the analysis of the first mouse model suffering from mtFAS-defect-induced neurodegenerative changes due to specific disruption of the Mecr gene in Purkinje cells. Our work sheds a light on the mechanisms of neurodegeneration caused by mtFAS deficiency and provides a test bed for future treatment approaches.


Assuntos
Cerebelo/metabolismo , Ácidos Graxos/biossíntese , Mitocôndrias/metabolismo , Degeneração Neural/metabolismo , Animais , Animais Recém-Nascidos , Cerebelo/patologia , Ácidos Graxos/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/genética , Mitocôndrias/patologia , Degeneração Neural/genética , Degeneração Neural/patologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética
16.
Hum Mol Genet ; 26(11): 2104-2117, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28369354

RESUMO

Mitochondrial fatty acid synthesis (mtFAS) is an underappreciated but highly conserved metabolic process, indispensable for mitochondrial respiration. It was recently reported that dysfunction of mtFAS causes childhood onset of dystonia and optic atrophy in humans (MEPAN). To study the role of mtFAS in mammals, we generated three different mouse lines with modifications of the Mecr gene, encoding mitochondrial enoyl-CoA/ACP reductase (Mecr). A knock-out-first type mutation, relying on insertion of a strong transcriptional terminator between the first two exons of Mecr, displayed embryonic lethality over a broad window of time and due to a variety of causes. Complete removal of exon 2 or replacing endogenous Mecr by its functional prokaryotic analogue fabI (Mecrtm(fabI)) led to more consistent lethality phenotypes and revealed a hypoplastic placenta. Analyses of several mitochondrial parameters indicate that mitochondrial capacity for aerobic metabolism is reduced upon disrupting mtFAS function. Further analysis of the synthetic Mecrtm(fabI) models disclosed defects in development of placental trophoblasts consistent with disturbed peroxisome proliferator-activated receptor signalling. We conclude that disrupted mtFAS leads to deficiency in mitochondrial respiration, which lies at the root of the observed pantropic effects on embryonic and placental development in these mouse models.


Assuntos
Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Animais , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/metabolismo , Feminino , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Placenta , Placentação/genética , Placentação/fisiologia , Gravidez
17.
Artigo em Inglês | MEDLINE | ID: mdl-27553474

RESUMO

Mitochondria and fatty acids are tightly connected to a multiplicity of cellular processes that go far beyond mitochondrial fatty acid metabolism. In line with this view, there is hardly any common metabolic disorder that is not associated with disturbed mitochondrial lipid handling. Among other aspects of mitochondrial lipid metabolism, apparently all eukaryotes are capable of carrying out de novo fatty acid synthesis (FAS) in this cellular compartment in an acyl carrier protein (ACP)-dependent manner. The dual localization of FAS in eukaryotic cells raises the questions why eukaryotes have maintained the FAS in mitochondria in addition to the "classic" cytoplasmic FAS and what the products are that cannot be substituted by delivery of fatty acids of extramitochondrial origin. The current evidence indicates that mitochondrial FAS is essential for cellular respiration and mitochondrial biogenesis. Although both ß-oxidation and FAS utilize thioester chemistry, CoA acts as acyl-group carrier in the breakdown pathway whereas ACP assumes this role in the synthetic direction. This arrangement metabolically separates these two pathways running towards opposite directions and prevents futile cycling. A role of this pathway in mitochondrial metabolic sensing has recently been proposed. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Proteína de Transporte de Acila/metabolismo , Animais , Respiração Celular/fisiologia , Humanos , Metabolismo dos Lipídeos/fisiologia , Lipogênese/fisiologia , Oxirredução
18.
Biochim Biophys Acta ; 1851(10): 1394-405, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26248199

RESUMO

α-Methylacyl-CoA racemase (Amacr) catalyzes the racemization of the 25-methyl group in C27-intermediates in bile acid synthesis and in methyl-branched fatty acids such as pristanic acid, a metabolite derived from phytol. Consequently, patients with Amacr deficiency accumulate C27-bile acid intermediates, pristanic and phytanic acid and display sensorimotor neuropathy, seizures and relapsing encephalopathy. In contrast to humans, Amacr-deficient mice are clinically symptomless on a standard laboratory diet, but failed to thrive when fed phytol-enriched chow. In this study, the effect and the mechanisms behind the development of the phytol-feeding associated disease state in Amacr-deficient mice were investigated. All Amacr-/- mice died within 36weeks on a phytol diet, while wild-type mice survived. Liver failure was the main cause of death accompanied by kidney and brain abnormalities. Histological analysis of liver showed inflammation, fibrotic and necrotic changes, Kupffer cell proliferation and fatty changes in hepatocytes, and serum analysis confirmed the hepatic disease. Pristanic and phytanic acids accumulated in livers of Amacr-/- mice after a phytol diet. Microarray analysis also revealed changes in the expression levels of numerous genes in wild-type mouse livers after two weeks of the phytol diet compared to a control diet. This indicates that detoxification of phytol metabolites in liver is accompanied by activation of multiple pathways at the molecular level and Amacr-/- mice are not able to respond adequately. Phytol causes primary failure in liver leading to death of Amacr-/- mice thus emphasizing the indispensable role of Amacr in detoxification of α-methyl-branched fatty acids.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fitol/toxicidade , Racemases e Epimerases/deficiência , Animais , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Células de Kupffer/metabolismo , Células de Kupffer/patologia , Camundongos , Camundongos Knockout
19.
Biochem J ; 461(1): 125-35, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24735479

RESUMO

Cholesterol is catabolized to bile acids by peroxisomal ß-oxidation in which the side chain of C27-bile acid intermediates is shortened by three carbon atoms to form mature C24-bile acids. Knockout mouse models deficient in AMACR (α-methylacyl-CoA racemase) or MFE-2 (peroxisomal multifunctional enzyme type 2), in which this ß-oxidation pathway is prevented, display a residual C24-bile acid pool which, although greatly reduced, implies the existence of alternative pathways of bile acid synthesis. One alternative pathway could involve Mfe-1 (peroxisomal multifunctional enzyme type 1) either with or without Amacr. To test this hypothesis, we generated a double knockout mouse model lacking both Amacr and Mfe-1 activities and studied the bile acid profiles in wild-type, Mfe-1 and Amacr single knockout mouse line and Mfe-1 and Amacr double knockout mouse lines. The total bile acid pool was decreased in Mfe-1-/- mice compared with wild-type and the levels of mature C24-bile acids were reduced in the double knockout mice when compared with Amacr-deficient mice. These results indicate that Mfe-1 can contribute to the synthesis of mature bile acids in both Amacr-dependent and Amacr-independent pathways.


Assuntos
Ácidos e Sais Biliares/biossíntese , Complexos Multienzimáticos/fisiologia , Racemases e Epimerases/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Animais , Complexos Multienzimáticos/deficiência , Complexos Multienzimáticos/genética , Racemases e Epimerases/deficiência , Racemases e Epimerases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...