Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotoxicology ; 18(2): 160-180, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38449436

RESUMO

The inheritable impact of exposure to graphene oxide nanoparticles (GO NPs) on vertebrate germline during critical windows of gamete development remain undetermined to date. Here, we analyzed the transgenerational effects of exposure to nano-graphene oxide particles (nGO) synthesized in house with lateral dimensions 300-600 nm and surface charge of -36.8 mV on different developmental stages of germ cells (GCs): (1) during GCs undergoing early development and differentiation, and (2) during GCs undergoing gametogenesis and maturation in adulthood. Biocompatibility analyses in Japanese medaka embryos showed lethality above 1 µg/ml and also an aberrant increase in germ cell count of both males and females at doses below the lethal dose. However, no lethality or anomalies were evident in adults up to 45 µg/ml. Long term exposure of embryos and adults for 21 days resulted in reduced fecundity. This effect was transmitted to subsequent generations, F1 and F2. Importantly, the inheritable effects of nGO in adults were pronounced at a high dose of 10 µg/ml, while 1 µg/ml showed no impact on the germline indicating lower doses used in this study to be safe. Further, expressions of selected genes that adversely affected oocyte maturation were enhanced in F1 and F2 individuals. Interestingly, the inheritance patterns differed corresponding to the stage at which the fish received the exposure.


Assuntos
Grafite , Nanopartículas , Oócitos , Oryzias , Animais , Grafite/toxicidade , Grafite/química , Oócitos/efeitos dos fármacos , Feminino , Masculino , Nanopartículas/toxicidade , Nanopartículas/química , Oogênese/efeitos dos fármacos
2.
Tissue Eng Part A ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37930736

RESUMO

Hybrid bioprinting uses sequential printing of melt-extruded biodegradable thermoplastic polymer and cell-encapsulated bioink in a predesigned manner using high- and low-temperature print heads for the fabrication of robust three-dimensional (3D) biological constructs. However, the high-temperature print head and melt-extruded polymer cause irreversible thermal damage to the bioprinted cells, and it affects viability and functionality of 3D bioprinted biological constructs. Thus, there is an urgent need to develop innovative approaches to protect the bioprinted cells, coming into contact or at close proximities to the melt-extruded thermoplastic polymer and the high-temperature print head during hybrid bioprinting. Therefore, this study investigated the potential of iterating the structural architecture pattern (SAP) of melt-printed thermoplastic layers and the cell printing pattern (CPP) to protect the cells from temperature-associated damage during hybrid bioprinting. A novel SAP for printing the thermoplastic polymer and an associated CPP for minimizing thermal damage to the 3D bioprinted construct have been developed. The newly developed SAP- and CPP-based hybrid bioprinted biological constructs showed significantly low thermal damage compared to conventionally hybrid bioprinted biological constructs. The results from this study suggest that the newly developed SAP and CPP can be an improved hybrid bioprinting strategy for developing living constructs at the human scale.

3.
Biomed Mater ; 18(6)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37738986

RESUMO

Bioengineered 3D models that can mimic patient-specific pathologiesin vitroare valuable tools for developing and validating anticancer therapeutics. In this study, microfibrillar matrices with unique structural and functional properties were fabricated as 3D spherical and disc-shaped scaffolds with highly interconnected pores and the potential of the newly developed scaffolds for developing prostate cancer model has been investigated. The newly developed scaffolds showed improved cell retention upon seeding with cancer cells compared to conventional electrospun scaffolds. They facilitated rapid growth and deposition of cancer-specific extracellular matrix through-the-thickness of the scaffold. Compared to the prostate cancer cells grown in 2D culture, the newly developed prostate cancer model showed increased resistance to the chemodrug Docetaxel regardless of the drug concentration or the treatment frequency. A significant reduction in the cell number was observed within one week after the drug treatment in the 2D culture for both PC3 and patient-derived cells. Interestingly, almost 20%-30% of the cancer cells in the newly developed 3D model survived the drug treatment, and the patient-derived cells were more resistant than the tested cell line PC3. The results from this study indicate the potential of the newly developed prostate cancer model forin vitrodrug testing.

4.
ACS Appl Bio Mater ; 6(8): 3143-3152, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37452776

RESUMO

Biomedical implants possessing the structural and functional characteristics of extracellular matrix (ECM) are pivotal for vascular applications. This study investigated the potential of recreating a natural ECM-like structural and functional environment on the surface of biodegradable polymeric nanotextiles for vascular implants. Human adipose-derived mesenchymal stem cells (MSCs) were grown on a suitably engineered polycaprolactone (PCL) nanofibrous textile and were allowed to modify its surface through the deposition of MSC-specific ECM. This surface-modified nanotextile showed mechanical characteristics and functionality appropriate for vascular patch material. The uniformity of ECM coating significantly improved the viability, proliferation, and migration of human endothelial cells compared to bare and xenogeneic collagen-coated PCL nanotextile patches. Thus, a polymeric nanotextile, which is surface modified using MSC-driven ECM, provided a rapid and improved endothelialization, thereby suggesting its potential for vascular patch applications.


Assuntos
Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Matriz Extracelular/química , Células Endoteliais da Veia Umbilical Humana
5.
Int Immunopharmacol ; 120: 110129, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201402

RESUMO

Tumor microenvironment (TME) is a heterogeneous system consisting of both cellular and acellular components. The growth and progression of tumors rely greatly on the nature of TME, marking it as an important target in cancer immunotherapy. Lewis Lung Carcinoma (LLC) is an established murine lung cancer model representing immunologically 'cold' tumors characterized by very few infiltrated cytotoxic T-cells, high levels of Myeloid-Derived Suppressor Cells (MDSCs) and Tumor-Associated Macrophages (TAMs). Here, we report various strategies we applied to reverse the non-immunogenic character of this cold tumor by imparting: a) immunogenic cell death using Hypericin nanoparticle-based photodynamic therapy (PDT), b) repolarising TAM using a TLR7/8 agonist, resiquimod, c) immune checkpoint inhibition using anti-PD-L1 and d) depleting MDSCs using low-dose 5-fluorouracil (5-FU) chemotherapy. Interestingly, the nano-PDT, resiquimod or anti-PD-L1 treatment had no major impact on tumor growth, whereas low-dose 5-FU-mediated depletion of MDSCs showed significant anti-tumor effect, primarily caused by the increased infiltration of CD8+ cytotoxic T-cells (∼96%). Though we have tested combining PDT with resiquimod or 5-FU for any synergistic effect, low-dose 5-FU alone showed better response than combinations. In effect, we show that depletion of MDSCs using low-dose 5-FU was one of the best methods to augment infiltration of CD8+ cytotoxic T-cells into a cold tumor, which is resistant to conventional therapies including immune checkpoint inhibitors.


Assuntos
Neoplasias Pulmonares , Células Supressoras Mieloides , Camundongos , Animais , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Linfócitos T CD8-Positivos , Células Mieloides , Imunoterapia , Neoplasias Pulmonares/tratamento farmacológico , Microambiente Tumoral , Linhagem Celular Tumoral
6.
Nanotechnology ; 34(23)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36731113

RESUMO

The voyage of semiconductor industry to decrease the size of transistors to achieve superior device performance seems to near its physical dimensional limitations. The quest is on to explore emerging material systems that offer dimensional scaling to match the silicon- based technologies. The discovery of atomic flat two-dimensional materials has opened up a completely new avenue to fabricate transistors at sub-10 nanometer level which has the potential to compete with modern silicon-based semiconductor devices. Molybdenum disulfide (MoS2) is a two-dimensional layered material with novel semiconducting properties at atomic level seems like a promising candidate that can possibly meet the expectation of Moore's law. This review discusses the various 'fabrication challenges' in making MoS2based electronic devices from start to finish. The review outlines the intricate challenges of substrate selection and various synthesis methods of mono layer and few-layer MoS2. The review focuses on the various techniques and methods to minimize interface defect density at substrate/MoS2interface for optimum MoS2-based device performance. The tunable band-gap of MoS2with varying thickness presents a unique opportunity for contact engineering to mitigate the contact resistance issue using different elemental metals. In this work, we present a comprehensive overview of different types of contact materials with myriad geometries that show a profound impact on device performance. The choice of different insulating/dielectric gate oxides on MoS2in co-planar and vertical geometry is critically reviewed and the physical feasibility of the same is discussed. The experimental constraints of different encapsulation techniques on MoS2and its effect on structural and electronic properties are extensively discussed.

7.
J Control Release ; 355: 474-488, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36739909

RESUMO

Glioblastoma Multiforme (GBM) is one of the challenging tumors to treat as it recurs, almost 100%, even after surgery, radiation, and chemotherapy. In many cases, recurrence happens within 2-3cm depth of the resected tumor margin, indicating the inefficacy of current anti-glioma drugs to penetrate deep into the brain tissue. Here, we report an injectable nanoparticle-gel system, capable of providing deep brain penetration of drug up to 4 cm, releasing in a sustained manner up to >15 days. The system consists of ∼222 nm sized PLGA nanoparticles (NP-222) loaded with an anti-glioma drug, Carmustine (BCNU), and coated with a thick layer of polyethylene glycol (PEG). Upon release of the drug from PLGA core, it will interact with the outer PEG-layer leading to the formation of PEG-BCNU nanocomplexes of size ∼33 nm (BCNU-NC-33), which could penetrate >4 cm deep into the brain tissue compared to the free drug (< 5 mm). In vitro drug release showed sustained release of drug for 15 days by BCNU-NP gel, and enhanced cytotoxicity by BCNU-NC-33 drug-nanocomplexes in glioma cell lines. Ex vivo goat-brain phantom studies showed drug diffusion up to 4 cm in tissue and in vivo brain-diffusion studies showed almost complete coverage within the rat brain (∼1.2 cm), with ∼55% drug retained in the tissue by day-15, compared to only ∼5% for free BCNU. Rat orthotopic glioma studies showed excellent anti-tumor efficacy by BCNU-NP gel compared to free drug, indicating the potential of the gel-system for anti-glioma therapy. In effect, we demonstrate a unique method of sustained release of drug in the brain using larger PLGA nanoparticles acting as a reservoir while deep-penetration of the released drug was achieved by in situ formation of drug-nanocomplexes of size <50 nm which is less than the native pore size of brain tissue (> 100 nm). This method will have a major impact on a challenging field of brain drug delivery.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Nanopartículas , Ratos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Carmustina/uso terapêutico , Preparações de Ação Retardada/metabolismo , Nanomedicina , Encéfalo/metabolismo , Glioma/tratamento farmacológico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Polietilenoglicóis/uso terapêutico
8.
Biomater Adv ; 142: 213149, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36270158

RESUMO

Recent advances in coronary stents have all been distinctively focused towards directing re-endothelialization with minimal in-stent restenosis, potentially via alterations in surface topographical cues, for augmenting the efficacy of vascular implants. This perspective was proven by our group utilizing a simple and easily scalable nanosurface modification strategy on metallic stents devoid of any drugs or polymers. In the present work, we explore the impact of surface characteristics in modulating this cell response in-vitro and in-vivo, using titania coated cobalt-chromium (CC) stents, with and without nanotopography, in comparison to commercial controls. Interestingly, titania nanotopography facilitated a preferential cell response in-vitro as against the titania coated and bare CC surfaces, which can be attributed to surface topography, hydrophilicity, and roughness. This in turn altered the cellular adhesion, proliferation and focal contact formations of endothelial and smooth muscle cells. We also demonstrate that titania nanotexturing plays a pivotal role in fostering rapid re-endothelialization with minimal neointimal hyperplasia, leading to excellent in-vivo patency of CC stents post 8 weeks implantation in rabbit iliac arteries, in comparison to bare CC, nano-less titania coated CC, and commercial drug-eluting stents (CC DES), without administering antiplatelet agents. This exciting result for the drug and polymer-free titania nanotextured stents, in the absence of platelet therapy, reveals the possibility of proposing an alternative to clinical DES for coronary stenting.


Assuntos
Reestenose Coronária , Stents Farmacológicos , Animais , Coelhos , Reestenose Coronária/prevenção & controle , Stents , Stents Farmacológicos/efeitos adversos , Titânio/uso terapêutico , Polímeros
9.
Biotechnol Bioeng ; 119(10): 2964-2978, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35799309

RESUMO

The osteopontin (OPN) released from mesenchymal stem cells (MSCs) undergoing lineage differentiation can negatively influence the expansion of hematopoietic stem cells (HSCs) in coculture systems developed for expanding HSCs. Therefore, minimizing the amount of OPN in the coculture system is important for the successful ex vivo expansion of HSCs. Toward this goal, a bioengineered three dimensional (3D) microfibrous-matrix that can maintain MSCs in less OPN-releasing conditions has been developed, and its influence on the expansion of HSCs has been studied. The newly developed 3D matrix significantly decreased the release of OPN, depending on the MSC culture conditions used during the priming period before HSC seeding. The culture system with the lowest amount of OPN facilitated a more than 24-fold increase in HSC number in 1 week time period. Interestingly, the viability of expanded cells and the CD34+   pure population of HSCs were found to be the highest in the low OPN-containing system. Therefore, bioengineered microfibrous 3D matrices seeded with MSCs, primed under suitable culture conditions, can be an improved ex vivo expansion system for HSC culture.


Assuntos
Células-Tronco Mesenquimais , Osteopontina , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Sangue Fetal , Células-Tronco Hematopoéticas
10.
Biomater Adv ; 133: 112631, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35527156

RESUMO

Mandible reconstruction and dental rehabilitation after trauma or tumor resection represent a serious challenge for maxillofacial surgeons. This study aimed to investigate the bone formation potential of nanocomposite fibrous scaffold (silica-nanohydroxyapatite-gelatin reinforced with poly L-lactic acid yarns - CSF) for delayed Titanium (Ti) implantation, which was compared to autograft (AG) taken from the iliac crest. The grafts were placed in critical-sized mandibular defects in an adult pig model for 6 months followed by dental implant placement for another 3 months. There was complete union and vascularised lamellar bone formation within 6 months. Moreover, the biological processes associated with angiogenesis, bone maturation and remodelling were seen in CSF, which was comparable to AG. Later, when Ti dental implant was placed on newly formed bone, CSF group demonstrated better osseointegration. In short, nanocomposite fibrous scaffold promoted quality bone formation in mandible defect that leads to successful osseointegration, suggesting as a potential candidate for implant-based rehabilitation in clinics in future.


Assuntos
Implantes Dentários , Reconstrução Mandibular , Nanocompostos , Animais , Transplante Ósseo , Mandíbula/cirurgia , Suínos , Titânio
12.
J Nanobiotechnology ; 20(1): 71, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135545

RESUMO

Globally, millions of patients are affected by myocardial infarction or lower limb gangrene/amputation due to atherosclerosis. Available surgical treatment based on vein and synthetic grafts provides sub-optimal benefits. We engineered a highly flexible and mechanically robust nanotextile-based vascular graft (NanoGraft) by interweaving nanofibrous threads of poly-L-lactic acid to address the unmet need. The NanoGrafts were rendered impervious with selective fibrin deposition in the micropores by pre-clotting. The pre-clotted NanoGrafts (4 mm diameter) and ePTFE were implanted in a porcine carotid artery replacement model. The fibrin-laden porous milieu facilitated rapid endothelization by the transmural angiogenesis in the NanoGraft. In-vivo patency of NanoGrafts was 100% at 2- and 4-weeks, with no changes over time in lumen size, flow velocities, and minimal foreign-body inflammatory reaction. However, the patency of ePTFE at 2-week was 66% and showed marked infiltration, neointimal thickening, and poor host tissue integration. The study demonstrates the in-vivo feasibility and safety of a thin-layered vascular prosthesis, viz., NanoGraft, and its potential superiority over the commercial ePTFE.


Assuntos
Implante de Prótese Vascular , Nanofibras , Animais , Prótese Vascular , Estudos de Viabilidade , Humanos , Politetrafluoretileno , Suínos
13.
Nanomedicine ; 40: 102481, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34748963

RESUMO

Tolerance induction is central to the suppression of autoimmunity. Here, we engineered the preferential uptake of nano-conjugated autoantigens by spleen-resident macrophages to re-introduce self-tolerance and suppress autoimmunity. The brain autoantigen, myelin oligodendrocyte glycoprotein (MOG), was conjugated to 200 or 500 nm silica nanoparticles (SNP) and delivered to the spleen and liver-resident macrophages of experimental autoimmune encephalomyelitis (EAE) mice, used as a model of multiple sclerosis. MOG-SNP conjugates significantly reduced signs of EAE at a very low dose (50 µg) compared to the higher dose (>800 µg) of free-MOG. This was associated with reduced proliferation of splenocytes and pro-inflammatory cytokines secretion, decreased spinal cord inflammation, demyelination and axonal damage. Notably, biodegradable porous SNP showed an enhanced disease suppression assisted by elevated levels of regulatory T cells and programmed-death ligands (PD-L1/2) in splenic and lymph node cells. Our results demonstrate that targeting nano-conjugated autoantigens to tissue-resident macrophages in lymphoid organs can effectively suppress autoimmunity.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Nanopartículas , Animais , Autoimunidade , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Glicoproteína Mielina-Oligodendrócito/uso terapêutico
14.
Neurooncol Adv ; 3(1): vdab104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604750

RESUMO

BACKGROUND: Nanoparticle siRNA-conjugates are promising clinical therapeutics as indicated by recent US-FDA approval. In glioma stem cells (GSC), multiple stemness associated genes were found aberrant. We report intracranially injectable, multi-gene-targeted siRNA nanoparticle gel (NPG) for the combinatorial silencing of 3 aberrant genes, thus inhibiting the tumorogenic potential of GSCs. METHODS: NPG loaded with siRNAs targeted against FAK, NOTCH-1, and SOX-2 were prepared by the self-assembly of siRNAs with protamine-hyaluronic acid combination. Electron microscopy, DLS, and agarose gel electrophoresis were used for the physicochemical characterization. Cell transfection and gene-silencing efficiency were studied using human mesenchymal stem cells and rat C6 glioma-derived GSCs. Neurosphere inhibition was tested in vitro using GSCs derived from C6 cell line and glioma patient samples. Patient-derived xenograft model and orthotopic rat glioma model were used to test the effect of NPG on in vivo tumorigenicity. RESULTS: The siRNA nanoparticles with an average size ~ 250 nm and ~ 95% loading efficiency showed cellular uptake in ~95.5% GSCs. Simultaneous gene silencing of FAK, NOTCH-1, and SOX-2 led to the inhibition of neurosphere formation by GSCs, whereas normal stem cells remained unaffected and retained neuronal differentiation capability. GBM PDX models manifested significant impairment in the tumorigenic potential of NPG treated GSCs. Intracranial injection of NPG inhibited tumor growth in orthotopic rat brain tumor model. CONCLUSION: Intracranially injectable n-siRNA NPG targeted to multiple stem-cell signaling impairs glioma initiation capabilities of GSCs and inhibited tumor growth in vivo.

15.
APL Bioeng ; 5(2): 021508, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34104846

RESUMO

Coronary in-stent restenosis and late stent thrombosis are the two major inadequacies of vascular stents that limit its long-term efficacy. Although restenosis has been successfully inhibited through the use of the current clinical drug-eluting stent which releases antiproliferative drugs, problems of late-stent thrombosis remain a concern due to polymer hypersensitivity and delayed re-endothelialization. Thus, the field of coronary stenting demands devices having enhanced compatibility and effectiveness to endothelial cells. Nanotechnology allows for efficient modulation of surface roughness, chemistry, feature size, and drug/biologics loading, to attain the desired biological response. Hence, surface topographical modification at the nanoscale is a plausible strategy to improve stent performance by utilizing novel design schemes that incorporate nanofeatures via the use of nanostructures, particles, or fibers, with or without the use of drugs/biologics. The main intent of this review is to deliberate on the impact of nanotechnology approaches for stent design and development and the recent advancements in this field on vascular stent performance.

16.
Nanomedicine (Lond) ; 16(12): 997-1015, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33970682

RESUMO

Aim: To develop a method for making total serum nanoparticles (TSN) loaded with cytotoxic chemodrugs for cancer therapy. Materials & methods: TSN loaded with paclitaxel (PTX) or piperlongumine (PL) were prepared using high-pressure homogenization and tested for immunogenicity in healthy animals and antitumor properties in pancreatic cancer xenograft models. Results: TSN-PL nanoparticles of average size 104 nm and encapsulation efficiency approximately 50% showed enhanced dose-dependent cytotoxicity compared with TSN-PTX or clinically used combination of gemcitabine and nano-PTX in two pancreatic cell lines. Significant antitumor efficacy was also established in the pancreatic xenograft model. Conclusion: We developed a unique method of converting total blood serum into chemo drug-loaded nanoparticles and demonstrated its efficacy in vitro and in vivo.


Assuntos
Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Humanos , Nanomedicina , Paclitaxel , Soro , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Integr Cancer Ther ; 20: 1534735421996824, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33615860

RESUMO

Co-therapy with herbal extracts along with current clinical drugs is being increasingly recognized as a useful complementary treatment for cancer. The anti-cancer property of the phyto-derivative acetyl-11 keto ß boswellic acid (AKBA) has been studied in many cancers, including prostate cancer. However, the whole extract of the gum resin Boswellia serrata (BS) and anti-androgen enzalutamide has not been explored in prostate cancer to date. We hypothesized that the BS extract containing 30% (AKBA) with enzalutamide acted synergistically in the early phase of cancer, especially in LNCaP cells, by inhibiting androgen receptor (AR) and by reducing cell proliferation, and further, that the extract would be superior to the action of the active ingredient AKBA when used alone or in combination with enzalutamide. To test our hypothesis, we treated LNCaP cells with BS extract or AKBA and enzalutamide both individually and in combination to analyze cell viability under different levels of dihydrotestosterone (DHT). The inhibition of androgen receptor (AR) followed by the expression of prostate-specific antigen (PSA) and the efflux mechanism of the cells were analyzed to determine the effect of the combination on the cellular mechanism. Cells derived from prostate cancer patients were also tested with the combination. Only 6 µM enzalutamide along with BS in the range of 4.1 µg/ml to 16.4 µg/ml gave the best synergistic results with nearly 50% cell killing even though standard enzalutamide doses were as high as 48 µM. Cell killing was most effective at intermediate DHT concentrations of approximately 1 nM, which corresponds to normal physiological serum levels of DHT. The Pgp expression level and the androgen receptor expression levels were reduced under the combination treatment; the former helping to minimize drug efflux and the latter by reducing the sensitivity to hormonal changes. Furthermore, the combination reduced the PSA level secreted by the cells. In contrast, AKBA could not achieve the needed synergism for adequate cell killing at equivalent concentrations. The combination of enzalutamide and BS extract containing 30% AKBA because of their synergistic interaction is an attractive therapeutic option for treating early stage (hormone-dependent) prostate cancer and is superior to the use of AKBA alone.


Assuntos
Benzamidas/farmacologia , Boswellia , Nitrilas/farmacologia , Feniltioidantoína/farmacologia , Extratos Vegetais , Neoplasias da Próstata/tratamento farmacológico , Testosterona , Triterpenos , Androgênios , Boswellia/química , Linhagem Celular Tumoral , Humanos , Masculino , Extratos Vegetais/farmacologia , Triterpenos/farmacologia
18.
ACS Appl Bio Mater ; 4(10): 7408-7421, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35006691

RESUMO

This study investigated the adverse effects of 200 nm zinc oxide particles (nZnO) on sexual behavior and reproduction in Japanese medaka in comparison with ZnSO4 and correlated the consequences with the bioaccumulation pattern of the particles in associated organs. nZnO exposure impaired sexual and territorial behaviors and affected fertility by altering sperm viability and motility in males through reactive oxygen species (ROS) induction. Conversely, none of these effects other than behavior loss was seen in males exposed to ZnSO4. nZnO exposure to females induced ROS in ovaries, causing follicular growth arrest, atresia, and subfertility. Further, sex-steroid levels were altered by both nZnO and ZnSO4 in males and by nZnO but not ZnSO4 in females. Biodistribution studies revealed the deposition of nZnO as particulate matter in the brain, gills, gut, kidney, and ovary. Particle accumulation in the brain was sex specific, as the particles were found in the brain of males but not that of females. A similar trend was seen for zinc levels in males and females exposed to ZnSO4. Importantly, the female sex hormone, 17ß-estradiol was found to prevent nZnO accumulation in the female brain, emphasizing the need for biodistribution profiling of nanoparticle-based drug delivery vehicles separately in males and females before they are commercialized. This study has demonstrated that the toxic effects of nZnO on the reproductive system were mainly caused by ROS induction, while zinc ions were predominantly responsible for the adverse impact of ZnSO4.


Assuntos
Oryzias , Óxido de Zinco , Animais , Bioacumulação , Feminino , Masculino , Espécies Reativas de Oxigênio/farmacologia , Reprodução , Distribuição Tecidual , Zinco/toxicidade , Óxido de Zinco/toxicidade
19.
Carbohydr Polym ; 248: 116763, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32919559

RESUMO

The main intent of this investigation was to retain the strength and superabsorbency of natural and non-toxic biodegradable polymers using an innovative combination of cross-linkers for application as the absorbent core of sanitary napkins. For this, sodium carboxymethyl cellulose (NaCMC) and starch were blend to form membranes by phase inversion and lyophilisation, using an optimized cross-linker combination of sodium trimetaphosphate (STMP) and aluminium sulphate (AlS). Optimal cross-linking of NaCMC and starch hampered membrane dissolution and disintegration, yielding a microtextured surface morphology. The membranes were biodegradable and yet possessed the requisite flexibility and mechanical strength for the proposed application, without compromise of superabsorbency. Lyophilised membranes possessed higher immediate water and blood sorption with ∼50% water retention capabilities when compared to the phase inversion technology. The results suggest that the developed membranes can be a cost-effective degradable alternative to the commercial polyacrylate-based nonbiodegradable sanitary products.


Assuntos
Resinas Acrílicas/química , Carboximetilcelulose Sódica/química , Polifosfatos/química , Amido/química , Materiais Biocompatíveis/química , Reagentes de Ligações Cruzadas/química , Feminino , Produtos de Higiene Feminina , Humanos , Membranas Artificiais
20.
ACS Omega ; 5(28): 17582-17591, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715243

RESUMO

Bare metal stents (BMSs) of stainless steel (SS) were surface engineered to develop nanoscale titania topography using a combination of physical vapor deposition and thermochemical processing. The nanoleafy architecture formed on the stent surface remained stable and adherent upon repeated crimping and expansion, as well as under flow. This titania nanoengineered stent showed a preferential proliferation of endothelial cells over smooth muscle cells in vitro, which is an essential requirement for improving the in vivo endothelialization, with concurrent reduction of intimal hyperplasia. The efficacy of this surface-modified stent was assessed after implantation in rabbit iliac arteries for 8 weeks. Significant reduction in neointimal thickening and thereby in-stent restenosis with complete endothelial coverage was observed for the nanotextured stents, compared to BMSs, even without the use of any antiproliferative agents or polymers as in drug-eluting stents. Nanotexturing of stents did not induce any inflammatory response, akin to BMSs. This study thus indicates the effectiveness of a facile titania nanotopography on SS stents for coronary applications and the possibility of bringing this low-priced material back to clinics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...