Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Psychiatry ; 26(10): 5658-5668, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34272488

RESUMO

Perineuronal nets (PNNs) are chondroitin sulphate proteoglycan-containing structures on the neuronal surface that have been implicated in the control of neuroplasticity and memory. Age-related reduction of chondroitin 6-sulphates (C6S) leads to PNNs becoming more inhibitory. Here, we investigated whether manipulation of the chondroitin sulphate (CS) composition of the PNNs could restore neuroplasticity and alleviate memory deficits in aged mice. We first confirmed that aged mice (20-months) showed memory and plasticity deficits. They were able to retain or regain their cognitive ability when CSs were digested or PNNs were attenuated. We then explored the role of C6S in memory and neuroplasticity. Transgenic deletion of chondroitin 6-sulfotransferase (chst3) led to a reduction of permissive C6S, simulating aged brains. These animals showed very early memory loss at 11 weeks old. Importantly, restoring C6S levels in aged animals rescued the memory deficits and restored cortical long-term potentiation, suggesting a strategy to improve age-related memory impairment.


Assuntos
Sulfatos de Condroitina , Plasticidade Neuronal , Envelhecimento , Animais , Encéfalo , Matriz Extracelular , Camundongos
3.
Nat Microbiol ; 2(12): 1697, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29093550

RESUMO

The original version of this Letter has been modified in the abstract and main text to better reflect the distribution of Neu5Ac sialoglycans in humans. Additionally, co-author Lingquan Deng's present address has been further clarified.

4.
Nat Microbiol ; 2(12): 1592-1599, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28993610

RESUMO

The evolution of virulence traits is central for the emergence or re-emergence of microbial pathogens and for their adaptation to a specific host 1-5 . Typhoid toxin is an essential virulence factor of the human-adapted bacterial pathogen Salmonella Typhi 6,7 , the cause of typhoid fever in humans 8-12 . Typhoid toxin has a unique A2B5 architecture with two covalently linked enzymatic 'A' subunits, PltA and CdtB, associated with a homopentameric 'B' subunit made up of PltB, which has binding specificity for the N-acetylneuraminic acid (Neu5Ac) sialoglycans 6,13 prominently present in humans 14 . Here, we examine the functional and structural relationship between typhoid toxin and ArtAB, an evolutionarily related AB5 toxin encoded by the broad-host Salmonella Typhimurium 15 . We find that ArtA and ArtB, homologues of PltA and PltB, can form a functional complex with the typhoid toxin CdtB subunit after substitution of a single amino acid in ArtA, while ArtB can form a functional complex with wild-type PltA and CdtB. We also found that, after addition of a single-terminal Cys residue, a CdtB homologue from cytolethal distending toxin can form a functional complex with ArtA and ArtB. In line with the broad host specificity of S. Typhimurium, we found that ArtB binds human glycans, terminated in N-acetylneuraminic acid, as well as glycans terminated in N-glycolylneuraminic acid (Neu5Gc), which are expressed in most other mammals 14 . The atomic structure of ArtB bound to its receptor shows the presence of an additional glycan-binding site, which broadens its binding specificity. Despite equivalent toxicity in vitro, we found that the ArtB/PltA/CdtB chimaeric toxin exhibits reduced lethality in an animal model, indicating that the host specialization of typhoid toxin has optimized its targeting mechanisms to the human host. This is a remarkable example of a toxin evolving to broaden its enzymatic activities and adapt to a specific host.


Assuntos
Adaptação Fisiológica , Endotoxinas/toxicidade , Especificidade de Hospedeiro/efeitos dos fármacos , Especificidade de Hospedeiro/fisiologia , Salmonella typhi/química , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Sítios de Ligação , Linhagem Celular , Cristalografia por Raios X , Glicômica , Células HEK293 , Humanos , Masculino , Camundongos , Modelos Moleculares , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Ácidos Neuramínicos/química , Ácidos Neuramínicos/metabolismo , Polissacarídeos/metabolismo , Salmonella typhi/patogenicidade , Fatores de Transcrição , Febre Tifoide/microbiologia , Fatores de Virulência
5.
J Biol Chem ; 292(7): 2557-2570, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28049733

RESUMO

All vertebrate cell surfaces display a dense glycan layer often terminated with sialic acids, which have multiple functions due to their location and diverse modifications. The major sialic acids in most mammalian tissues are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), the latter being derived from Neu5Ac via addition of one oxygen atom at the sugar nucleotide level by CMP-Neu5Ac hydroxylase (Cmah). Contrasting with other organs that express various ratios of Neu5Ac and Neu5Gc depending on the variable expression of Cmah, Neu5Gc expression in the brain is extremely low in all vertebrates studied to date, suggesting that neural expression is detrimental to animals. However, physiological exploration of the reasons for this long term evolutionary selection has been lacking. To explore the consequences of forced expression of Neu5Gc in the brain, we have established brain-specific Cmah transgenic mice. Such Neu5Gc overexpression in the brain resulted in abnormal locomotor activity, impaired object recognition memory, and abnormal axon myelination. Brain-specific Cmah transgenic mice were also lethally sensitive to a Neu5Gc-preferring bacterial toxin, even though Neu5Gc was overexpressed only in the brain and other organs maintained endogenous Neu5Gc expression, as in wild-type mice. Therefore, the unusually strict evolutionary suppression of Neu5Gc expression in the vertebrate brain may be explained by evasion of negative effects on neural functions and by selection against pathogens.


Assuntos
Evolução Biológica , Encéfalo/metabolismo , Ácidos Neuramínicos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Endotélio Vascular/metabolismo , Locomoção , Espectrometria de Massas , Transtornos da Memória/metabolismo , Camundongos , Camundongos Transgênicos
6.
J Biol Chem ; 292(3): 1029-1037, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27920204

RESUMO

CD33-related Siglecs are a family of proteins widely expressed on innate immune cells. Binding of sialylated glycans or other ligands triggers signals that inhibit or activate inflammation. Immunomodulation by Siglecs has been extensively studied, but relationships between structure and functions are poorly explored. Here we present new data relating to the structure and function of Siglec-E, the major CD33-related Siglec expressed on mouse neutrophils, monocytes, macrophages, and dendritic cells. We generated nine new rat monoclonal antibodies specific to mouse Siglec-E, with no cross-reactivity to Siglec-F. Although all antibodies detected Siglec-E on transfected human HEK-293T cells, only two reacted with mouse bone marrow neutrophils by flow cytometry and on spleen sections by immunohistochemistry. Moreover, whereas all antibodies recognized Siglec-E-Fc on immunoblots, binding was dependent on intact disulfide bonds and N-glycans, and only two antibodies recognized native Siglec-E within spleen lysates. Thus, we further investigated the impact of Siglec-E homodimerization. Homology-based structural modeling predicted a cysteine residue (Cys-298) in position to form a disulfide bridge between two Siglec-E polypeptides. Mutagenesis of Cys-298 confirmed its role in dimerization. In keeping with the high level of 9-O-acetylation found in mice, sialoglycan array studies indicate that this modification has complex effects on recognition by Siglec-E, in relationship to the underlying structures. However, we found no differences in phosphorylation or SHP-1 recruitment between dimeric and monomeric Siglec-E expressed on HEK293A cells. Phylogenomic analyses predicted that only some human and mouse Siglecs form disulfide-linked dimers. Notably, Siglec-9, the functionally equivalent human paralog of Siglec-E, occurs as a monomer.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos B/metabolismo , Regulação da Expressão Gênica/fisiologia , Multimerização Proteica/fisiologia , Substituição de Aminoácidos , Animais , Anticorpos/química , Antígenos CD/química , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos B/química , Antígenos de Diferenciação de Linfócitos B/genética , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Glicosilação , Humanos , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Monócitos/citologia , Monócitos/metabolismo , Mutagênese , Mutação de Sentido Incorreto , Neutrófilos/citologia , Neutrófilos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6 , Ratos , Ratos Endogâmicos Lew , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
7.
Mol Biol Cell ; 27(13): 2037-50, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27170180

RESUMO

Endomitosis is a special type of mitosis in which only cytokinesis-the final step of the cell division cycle-is defective, resulting in polyploid cells. Although endomitosis is biologically important, its regulatory aspects remain elusive. Psychosine, a lysogalactosylceramide, prevents proper cytokinesis when supplemented to proliferating cells. Cytokinetic inhibition by psychosine does not inhibit genome duplication. Consequently cells undergo multiple rounds of endomitotic cell cycles, resulting in the formation of giant multiploid cells. Here we successfully quantified psychosine-triggered multiploid cell formation, showing that membrane sphingolipids ratios modulate psychosine-triggered polyploidy in Namalwa cells. Among enzymes that experimentally remodel cellular sphingolipids, overexpression of glucosylceramide synthase to biosynthesize glycosylsphingolipids (GSLs) and neutral sphingomyelinase 2 to hydrolyze sphingomyelin (SM) additively enhanced psychosine-triggered multiploidy; almost all of the cells became polyploid. In the presence of psychosine, Namalwa cells showed attenuated cell surface SM clustering and suppression of phosphatidylinositol 4,5-bisphosphate production at the cleavage furrow, both important processes for cytokinesis. Depending on the sphingolipid balance between GSLs and SM, Namalwa cells could be effectively converted to viable multiploid cells with psychosine.


Assuntos
Fosfatidilinositóis/metabolismo , Psicosina/metabolismo , Animais , Ciclo Celular/fisiologia , Membrana Celular/metabolismo , Fase de Clivagem do Zigoto , Citocinese/fisiologia , Glucosiltransferases , Humanos , Membranas , Mitose/efeitos dos fármacos , Mitose/fisiologia , Poliploidia , Psicosina/farmacologia , Esfingolipídeos/metabolismo
8.
Cell ; 159(6): 1290-9, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25480294

RESUMO

Salmonella Typhi is an exclusive human pathogen that causes typhoid fever. Typhoid toxin is a S. Typhi virulence factor that can reproduce most of the typhoid fever symptoms in experimental animals. Toxicity depends on toxin binding to terminally sialylated glycans on surface glycoproteins. Human glycans are unusual because of the lack of CMAH, which in other mammals converts N-acetylneuraminic acid (Neu5Ac) to N-glycolylneuraminic acid (Neu5Gc). Here, we report that typhoid toxin binds to and is toxic toward cells expressing glycans terminated in Neu5Ac (expressed by humans) over glycans terminated in Neu5Gc (expressed by other mammals). Mice constitutively expressing CMAH thus displaying Neu5Gc in all tissues are resistant to typhoid toxin. The atomic structure of typhoid toxin bound to Neu5Ac reveals the structural bases for its binding specificity. These findings provide insight into the molecular bases for Salmonella Typhi's host specificity and may help the development of therapies for typhoid fever.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Glicoproteínas de Membrana/química , Ácido N-Acetilneuramínico/química , Ácido N-Acetilneuramínico/metabolismo , Salmonella typhi/química , Animais , Toxinas Bacterianas/genética , Linhagem Celular , Células Cultivadas , Cristalografia por Raios X , Especificidade de Hospedeiro , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Ácidos Neuramínicos/metabolismo , Pan troglodytes , Salmonella typhi/patogenicidade , Febre Tifoide/microbiologia
9.
Methods Mol Biol ; 1200: 379-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25117252

RESUMO

Remodeling of glycans on the cell surface is an essential technique to analyze cellular function of lectin-glycan ligand interaction. Here we describe the methods to identify the responsible enzyme (glycosyltransferase) regulating the expression of the glycan of interest and to modulate the glycan expression by overexpressing the glycosyltransferase gene. For the identification of the responsible enzyme, we introduce a new method, CIRES (correlation index-based responsible-enzyme gene screening), that consists of statistical comparison of glycan expression profile obtained by flow cytometry and gene expression profile obtained by DNA microarray.


Assuntos
Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Polissacarídeos/metabolismo , Adesão Celular , Expressão Gênica , Vetores Genéticos/genética , Humanos , Lipídeos/química , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos/genética , Retroviridae/genética , Transfecção
10.
J Immunol ; 192(11): 5406-14, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24790146

RESUMO

Siglec-G is an inhibitory receptor on B1 cells. Siglec-G-deficient mice show a large B1 cell expansion, owing to higher BCR-induced Ca(2+) signaling and enhanced cellular survival. It was unknown why Siglec-G shows a B1 cell-restricted inhibitory function. With a new mAb we could show a comparable Siglec-G expression on B1 cells and conventional B2 cells. However, Siglec-G has a different ligand sialic acid-binding pattern on peritoneal B1 cells than on splenic B cells, and its sialic acid ligands are expressed differentially on these two B cell populations, suggesting that cis-ligand binding plays a crucial role on B1 cells. This observation was further studied by generation of Siglec-G knockin mice with a mutated ligand-binding domain. These mice show increased B1 cell numbers, increased B1 cell Ca(2+) signaling, better B1 cell survival, and changes in the B1 cell Ig repertoire. These phenotypes are very similar to Siglec-G-deficient mice. The mutation of the ligand-binding domain of Siglec-G strongly reduces the Siglec-G-IgM association on the B cell surface. Thus, Siglec-G sialic acid-dependent binding to the BCR is crucial for the B1 cell-restricted inhibitory function of Siglec-G and is regulated in an opposite way to that of the related protein CD22 (Siglec-2) on B cells.


Assuntos
Subpopulações de Linfócitos B/imunologia , Sinalização do Cálcio/imunologia , Lectinas/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Subpopulações de Linfócitos B/citologia , Imunoglobulina M/imunologia , Lectinas/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Mutantes , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos B/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico
11.
J Biol Chem ; 289(3): 1564-79, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24297165

RESUMO

Sialic acids (Sias) are often conjugated to the termini of cellular glycans and are key mediators of cellular recognition. Sias are nine-carbon acidic sugars, and, in vertebrates, the major species are N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc), differing in structure at the C5 position. Previously, we described a positive feedback loop involving regulation of Neu5Gc expression in mouse B cells. In this context, Neu5Gc negatively regulated B-cell proliferation, and Neu5Gc expression was suppressed upon activation. Similarly, resting mouse T cells expressed principally Neu5Gc, and Neu5Ac was induced upon activation. In the present work, we used various probes to examine sialoglycan expression by activated T cells in terms of the Sia species expressed and the linkages of Sias to glycans. Upon T-cell activation, sialoglycan expression shifted from Neu5Gc to Neu5Ac, and the linkage shifted from α2,6 to α2,3. These changes altered the expression levels of sialic acid-binding immunoglobulin-like lectin (siglec) ligands. Expression of sialoadhesin and Siglec-F ligands increased, and that of CD22 ligands decreased. Neu5Gc exerted a negative effect on T-cell activation, both in terms of the proliferative response and in the context of activation marker expression. Suppression of Neu5Gc expression in mouse T and B cells prevented the development of nonspecific CD22-mediated T cell-B cell interactions. Our results suggest that an activation-dependent shift from Neu5Gc to Neu5Ac and replacement of α2,6 by α2,3 linkages may regulate immune cell interactions at several levels.


Assuntos
Linfócitos B/metabolismo , Comunicação Celular/fisiologia , Ativação Linfocitária/fisiologia , Ácidos Siálicos/metabolismo , Linfócitos T/metabolismo , Animais , Antígenos de Diferenciação Mielomonocítica/biossíntese , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Células Cultivadas , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/biossíntese , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Ácidos Siálicos/genética , Ácidos Siálicos/imunologia , Linfócitos T/citologia , Linfócitos T/imunologia
12.
J Biol Chem ; 286(31): 27214-24, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21665948

RESUMO

Cellular biosynthesis of macromolecules often involves highly branched enzyme pathways, thus cellular regulation of such pathways could be rather difficult. To understand the regulatory mechanism, a systematic approach could be useful. We genetically analyzed a branched biosynthetic pathway for glycosphingolipid (GSL) GM1 using correlation index-based responsible enzyme gene screening (CIRES), a novel quantitative phenotype-genotype correlation analysis. CIRES utilizes transcriptomic profiles obtained from multiple cells. Among a panel of B cell lines, expression of GM1 was negatively correlated with and suppressed by gene expression of CD77 synthase (CD77Syn), whereas no significant positive correlation was found for enzymes actually biosynthesizing GM1. Unexpectedly, a GM1-suppressive phenotype was also observed in the expression of catalytically inactive CD77Syn, ruling out catalytic consumption of lactosylceramide (LacCer) as the main cause for such negative regulation. Rather, CD77Syn seemed to limit other branching reaction(s) by targeting LacCer synthase (LacCerSyn), a proximal enzyme in the pathway, because they were closely localized in the Golgi apparatus and formed a complex. Moreover, turnover of LacCerSyn was accelerated upon CD77Syn expression to globally change the GSL species expressed. Collectively, these data suggest that transcriptomic assessment of macromolecule biosynthetic pathways can disclose a global regulatory mechanism(s) even when unexpected.


Assuntos
Perfilação da Expressão Gênica , Glicoesfingolipídeos/biossíntese , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Compartimento Celular , Linhagem Celular , Citometria de Fluxo , Imunofluorescência , Técnicas de Transferência de Genes , Vetores Genéticos , Humanos , Retroviridae/genética , Frações Subcelulares/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...