Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 941: 173145, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768732

RESUMO

The COVID-19 pandemic has given a chance for researchers and policymakers all over the world to study the impact of lockdowns on air quality in each country. This review aims to investigate the impact of the restriction of activities during the lockdowns in the Asian Monsoon region on the main criteria air pollutants. The various types of lockdowns implemented in each country were based on the severity of the COVID-19 pandemic. The concentrations of major air pollutants, especially particulate matter (PM) and nitrogen dioxide (NO2), reduced significantly in all countries, especially in South Asia (India and Bangladesh), during periods of full lockdown. There were also indications of a significant reduction of sulfur dioxide (SO2) and carbon monoxide (CO). At the same time, there were indications of increasing trends in surface ozone (O3), presumably due to nonlinear chemistry associated with the reduction of oxides of nitrogens (NOX). The reduction in the concentration of air pollutants can also be seen in satellite images. The results of aerosol optical depth (AOD) values followed the PM concentrations in many cities. A significant reduction of NO2 was recorded by satellite images in almost all cities in the Asian Monsoon region. The major reductions in air pollutants were associated with reductions in mobility. Pakistan, Bangladesh, Myanmar, Vietnam, and Taiwan had comparatively positive gross domestic product growth indices in comparison to other Asian Monsoon nations during the COVID-19 pandemic. A positive outcome suggests that the economy of these nations, particularly in terms of industrial activity, persisted during the COVID-19 pandemic. Overall, the lockdowns implemented during COVID-19 suggest that air quality in the Asian Monsoon region can be improved by the reduction of emissions, especially those due to mobility as an indicator of traffic in major cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Material Particulado , COVID-19/epidemiologia , Poluição do Ar/estatística & dados numéricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental , Ásia/epidemiologia , Dióxido de Nitrogênio/análise , Humanos , Ozônio/análise , Pandemias , Dióxido de Enxofre/análise , SARS-CoV-2 , Bangladesh/epidemiologia , Índia/epidemiologia
2.
Environ Sci Pollut Res Int ; 31(10): 15788-15808, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305978

RESUMO

This study attempts to examine the morphological, elemental and physical characteristics of PM10 over the Indian Himalayan Region (IHR) using FTIR and scanning electron microscopy-energy dispersive X-ray (SEM-EDX) analysis. The study aimed at source identification of PM10 by exploring the inorganic ions, organic functional groups, morphology and elemental characteristics. The pollution load of PM10 was estimated as 63 ± 22 µg m-3; 53 ± 16 µg m-3; 67 ± 26 µg m-3 and 55 ± 11 µg m-3 over Mohal-Kullu, Almora, Nainital and Darjeeling, respectively. ATR-FTIR spectrum analysis revealed the existence of inorganic ions (SiO44-, TiO2, SO42-, SO3-, NO3-, NO2-, CO32-, HCO3-, NH4+) and organic functional groups (C-C, C-H, C=C, C≡C, C=O, N-H, C≡N, C=N, O-H, cyclic rings, aromatic compounds and some heterogeneous groups) in PM10 which may arise from geogenic, biogenic and anthropogenic sources. The morphological and elemental characterization was performed by SEM-EDX, inferring for geogenic origin (Al, Na, K, Ca, Mg and Fe) due to the presence of different morphologies (irregular, spherical, cluster, sheet-like solid deposition and columnar). In contrast, particles having biogenic and anthropogenic origins (K, S and Ba) have primarily spherical with few irregular particles at all the study sites. Also, the statistical analysis ANOVA depicts that among all the detected elements, Na, Al, Si, S and K are site-specific in nature as their mean of aw% significantly varied for all the sites. The trajectory analysis revealed that the Uttarakhand, Jammu and Kashmir, the Thar Desert, Himachal Pradesh, Pakistan, Afghanistan, Nepal, Sikkim, the Indo-Gangetic Plain (IGP) and the Bay of Bengal (BoB) contribute to the increased loading of atmospheric pollutants in various locations within the IHR.


Assuntos
Poluentes Atmosféricos , Material Particulado , Material Particulado/análise , Poluentes Atmosféricos/análise , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Estações do Ano , Monitoramento Ambiental , Índia , Aerossóis/análise , Íons
3.
Sci Rep ; 13(1): 7133, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37130920

RESUMO

The variability and trend of ozone (O3) in the Upper troposphere and Lower Stratosphere (UTLS) over the Asian region needs to be accurately quantified. Ozone in the UTLS radiatively heats this region and cools the upper parts of the stratosphere. This results in an impact on relative humidity, static stability in the UTLS region and tropical tropopause temperature. A major challenge for understanding ozone chemistry in the UTLS is sparse observations and thus the representation of precursor gases in model emission inventories. Here, we evaluate ozonesonde measurements during August 2016 at Nainital, in the Himalayas, against ozone from multiple reanalyses and the ECHAM6-HAMMOZ model. We find that compared to measurements both reanalyses and ECHAM6-HAMMOZ control simulation overestimate ozone mixing ratios in the troposphere (20 ppb) and in the UTLS (55 ppb). We performed sensitivity simulations using the ECHAM6-HAMMOZ model for a 50% reduction in the emission of (1) NOx and (2) VOCs. The model simulations with NOX reduction agree better with the ozonesonde observations in the lower troposphere and in the UTLS. Thus, neither reanalyses nor ECHAM6-HAMMOZ results can reproduce observed O3 over the South Asian region. For a better representation of O3 in the ECHAM6-HAMMOZ model, NOX emission should be reduced by 50% in the emission inventory. A larger number of observations of ozone and precursor gases over the South Asian region would improve the assessment of ozone chemistry in models.

4.
Environ Sci Pollut Res Int ; 29(15): 22515-22530, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34792768

RESUMO

Escalating emissions of several air pollutants over South Asia could play a detrimental role in the regional and global atmosphere. Therefore, it is necessary to investigate these emissions within the boundary layer and at higher heights utilizing satellite data that are more inclusionary, where limited in situ observations are available. Here, we utilize the Infrared Atmospheric Sounding Interferometer (IASI), Ozone Monitoring Instruments (OMI), TROPOspheric Monitoring Instrument (TROPOMI), and Global Ozone Monitoring Experiment (GOME-2) hyperspectral satellite data to assess the changes in emission sources during Indian lockdown with a primary focus on the tropospheric profiles of ozone and carbon monoxide (CO). A significant reduction (> 20%) in the tropospheric ozone was seen over northern and northeast regions compared to 2018, while a dramatic increase (> 20%) compared to 2019 was seen. The subtropical dynamics mainly contributed to the increased ozone over the northern region. An analysis of the ozone production regime showed mostly NO2 limited regime over the major part of India and VOC limited regime over thermal power plants regions. Unlike in the boundary layer, where CO showed reduction (15-20%), CO profiles showed a consistent increase (as high as 31%) in the free troposphere over the majority of cities and thermal power plants. The CO total column also showed an increase (~ 20%) over central and western India and a slight decrease (5%) over northern India. Similar to CO, an increase (~ 15%) of NO2 column over the western region was observed particularly compared to 2019. However, unlike ozone and CO, reduction of tropospheric NO2 columns was seen over the major part of India, with the highest reduction over northern regions (20-52%). Furthermore, homogeneous yearly differences (> 30%) between OMI and TROPOMI NO2 observations were also seen distinctly over the remote areas. Contrary to surface-based studies, the present study shows an increase in CO, ozone (decrease), and NO2 at several locations and in the free troposphere during the lockdown.


Assuntos
Poluentes Atmosféricos , COVID-19 , Ozônio , Poluentes Atmosféricos/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Índia , Dióxido de Nitrogênio/análise , Ozônio/análise , Tecnologia de Sensoriamento Remoto , SARS-CoV-2
6.
Environ Sci Pollut Res Int ; 28(12): 14654-14670, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33219503

RESUMO

Simultaneous observations (2014-2017) of organic carbon (OC) and elemental carbon (EC) are made over a high-altitude site (Nainital, 29.4°N, 79.5°E, 1958 m a.m.s.l) in the central Himalayas, and the role of long-range transport, meteorology and biomass burning is studied. There are only a few online and simultaneous observations of OC and EC over South Asia and none in the high-altitude Himalayan region. This work presents the first diurnal variations with a unimodal pattern in both OC and EC at the Himalayan site. Such a diurnal pattern is in contrast with the bimodal pattern observed at any continental polluted site. Clear seasonal variations in OC and EC were seen with a primary maximum during spring and a secondary maximum in autumn/winter. OC and EC concentrations are observed to be as high as 65.8 µg/m3 and 12 µg/m3, in May, respectively. Concentration weighted trajectory (CWT)-assisted analysis shows that the biomass burning in northern India is one of the major sources for the springtime maximum even at this high-altitude site. The coinciding rise in OC/EC ratio from 4.6 to 7.9, along with fire events, further convinces that the enhancement in the concentrations is due to the biomass burning at distant regions and long-range transport of air masses influencing this high-altitude site. A poor covariation between OC-EC and the boundary-layer height during autumn and winter suggests that secondary maxima in OC and EC are most likely due to local sources, e.g. household burning for heating during this cold period when the temperature drops sharply after October and remains low until February. The higher temporal resolution of online measurements reveals that swiftly varying meteorological parameters change the OC-EC concentrations at diurnal scales. Back-air trajectory-assisted analysis of residence time and its relationship with OC and EC confirms the increase in their concentration in slow-moving air masses. The observed diurnal variations of EC are utilized to estimate the radiative forcing and shown that the atmospheric radiative forcing during the afternoon is about 70% higher than the forenoon one. It is envisaged that this dataset with diurnal observations of OC and EC would be an important input for studying the radiation budget and source apportionment over this high-altitude region.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Altitude , Ásia , Biomassa , Carbono/análise , Monitoramento Ambiental , Índia , Meteorologia , Material Particulado/análise , Estações do Ano
7.
Environ Sci Pollut Res Int ; 24(26): 20972-20981, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28726222

RESUMO

Surface ozone is mainly produced by photochemical reactions involving various anthropogenic pollutants, whose emissions are increasing rapidly in India due to fast-growing anthropogenic activities. This study estimates the losses of wheat and rice crop yields using surface ozone observations from a group of 17 sites, for the first time, covering different parts of India. We used the mean ozone for 7 h during the day (M7) and accumulated ozone over a threshold of 40 ppbv (AOT40) metrics for the calculation of crop losses for the northern, eastern, western and southern regions of India. Our estimates show the highest annual loss of wheat (about 9 million ton) in the northern India, one of the most polluted regions in India, and that of rice (about 2.6 million ton) in the eastern region. The total all India annual loss of 4.0-14.2 million ton (4.2-15.0%) for wheat and 0.3-6.7 million ton (0.3-6.3%) for rice are estimated. The results show lower crop loss for rice than that of wheat mainly due to lower surface ozone levels during the cropping season after the Indian summer monsoon. These estimates based on a network of observation sites show lower losses than earlier estimates based on limited observations and much lower losses compared to global model estimates. However, these losses are slightly higher compared to a regional model estimate. Further, the results show large differences in the loss rates of both the two crops using the M7 and AOT40 metrics. This study also confirms that AOT40 cannot be fit with a linear relation over the Indian region and suggests for the need of new metrics that are based on factors suitable for this region.


Assuntos
Poluentes Atmosféricos/farmacologia , Produtos Agrícolas/efeitos dos fármacos , Oryza/efeitos dos fármacos , Ozônio/farmacologia , Triticum/efeitos dos fármacos , Poluentes Atmosféricos/análise , Índia , Ozônio/análise , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...